CuO NPs incorporated single and double junction polymer solar cells

Authors

  • Aruna P. Wanninayake Materials Science and Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53201, USA Author
  • Benjamin C. Church Materials Science and Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53201, USA Author
  • Nidal Abu-Zahra Materials Science and Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53201, USA Author

DOI:

https://doi.org/10.56053/2.1.31

Keywords:

ZnO nanoparticles, CuO nanoparticles, UV-visible spectroscopy

Abstract

Multi-junction architecture is an attractive method to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected multi-junction polymer solar cells (PSCs) have attracted much attention during the past decade. In this study, single- and double-layer polymer solar cells were fabricated incorporating copper oxide and zinc oxide nanoparticles (CuO and ZnO NPs) in the active layers. Thermal annealing treatment was applied to the single and double junction devices at 200oC to optimize the nanoscale morphology. The single layer device produced 2.963% power conversion efficiency and it was reduced to 1.102% in the double junction solar cell. However, the enhanced morphological and optoelectronic properties attained by applying thermal annealing, slightly increased the power conversion efficiency. Meanwhile, the external quantum efficiency (EQE) increased from 32.4% to 37%, showing an enhancement of 12.4% with the thermal annealing treatment.

References

-[1] N. Abu-Zahra and M. Algazzar, J. Sol. Energy Eng. 136(2) (2013) 021023

-[2] M. Manceau, D. Angmo, M. Jorgensen, and F.C. Krebs, Org. Electron. 12 (2011) 566-574

-[3] C. H. Michael and D. Ali, Applied Phys. Rev. 2 (2014) 014008

-[4] A.P. Wanninayake, B.C. Church, N. Abu-Zahra, J. Sustainable Energy Eng. 3(4) (2016) 333-342(10)

-[5] A.P. Wanninayake, S. Li, B.C. Church, N. Abu-Zahra, International Journal of Renewable Energy Research, 5(4) (2015) 1080-1091

-[6] J.-D Chen, C.Cui, Y.Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, J.-X. Tang, Adv. Mater. 27 (2015) 1035−1041

-[7] Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu,K. Jiang, H. Lin, H. Ade, H. Yan, Nat. Commun. 5 (2014) 5293−5300

-[8] D. J. D. Moet, P. de Bruyn, P.W.M. Blom, Appl. Phys. Lett. 96 (2010) 153504−153506.

-[9] W. Li, A. Furlan, K.H. Hendriks, M.M. Wienk, R.A.J. Janssen, J. Am. Chem. Soc. 135 (2013) 5529−5532

-[10] A. R. b. M. Yusoff, W. J. da Silva, H. P. Kim, J. Jang, Nanoscale 5 (2013) 11051−11057

-[11]M.-R Choi, T.-H. Han, K.-G. Lim, S.-H. Woo, D. H. Huh, T.-W. Lee, Angew. Chem. 123 (2011) 6398−6401

-[12] T. Kuwabara, Y. Kawahara, T. Yamaguchi, K. Takahashi, ACS Appl. Mater. Interfaces 1 (2009) 2107−2110

-[13] Y. Xu, Z. Sui, B. Xu, H. Duan, X. Zhang, J. Mater. Chem. 22 (2012) 8579−8584

-[14] A. Hadipour, B. de Boer, P. W. M. Blom, Adv. Funct. Mater. 18 (2008) 169–181

-[15] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, Science 317 (2007) 222

-[16] R. P. P. Singh, I.S. Hudiara, S. Panday, P. Kumar, S. B. Rana, Int. J. Nanoelectronics and Materials 9 (2016) 1-8

-[17] A.M. Shehap, D. S.Akil, Int. J. Nanoelectronics and Materials 9 (2016) 17-36

-[18] A.P. Wanninayake, S. Gunashekar, S. Li, B.C. Church, N. Abu-Zahra J. Sol. Energy Eng. 137 (2015) 031016

-[19] A.P. Wanninayake, S. Li, B.C. Church, N. Abu-Zahra, AIMS Materials Science 3(1) (2015) 35-50

-[20] J. Lee, H. Kang, J. Kong, K. A. Lee, Adv. Energy Mater. 4 (2014) 1301226

-[21]. Y. Zhou, C. Fuentes-Hernandez, J.W. Shim, T.M. Khan, B. Kippelen, Energy Environ. Sci. 5 (2012) 9827−9832

-[22]. B.P. Nguyen, T. Kim, C.R. Park, J. Nanomater. 2014 (2014) 243041

-[23] B. Eisenhawer, S. Sensfuss, V. Sivakov, M. Pietsch, G. Andra F. Falk Nanotechnology 22 (2011) 315401

-[24] A.P. Wanninayake, B.C. Church, N. Abu-Zahra, AIMS Materials Science 3(3) (2016) 927-937

-[25] A.P. Wanninayake, S. Gunashekar, S. Li, B.C. Church, N. Abu-Zahra J. Sustainable Energy Eng. 3(2) (2015) 107-126(20)

-[26] F.-C.Chen, S.-C Chien J. Mater. Chem. 19 (2009) 6865−6869

-[27] H. Kang, J. Lee, S. Jung, K. Yu, S. Kwon, S. Hong, S. Kee, S. Lee, D. Kim, K. Lee, Nanoscale 5 (2013) 11587− 1591

-[28] J.J. van Franeker, W. Voorthuijzen, H. Gorter, K.H. Hendriks, R.A. Janssen, A. Hadipour, R. Andriessen, Y. Galagan, Sol. Ener. Mater. Sol. Cells 117 (2013) 267–272

-[29] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, Adv. Mater 18 (2006) 572

-[30] L. Roest, J. J. Kelly, D. Vanmaekelbergh and E. A. Meulenkamp, Phys. Rev. Lett. 89 (2002) 036801

-[31] V. Djara and J. Bernède, Thin Solid Films 493 (2005) 273

-[32] T. Oo, N. Mathews, T. Tam, G. Xing, T. Sum, A. Sellinger, L. Wong, S. Mhaisalkar. Thin Solid Films 518 (2010) 5292

-[33] A. Wanninayake, S. Gunashekar, S. Li, B. C. Church and N. Abu-Zahra, Semicond. Sci. Technol. 30 (2015) 064004

Downloads

Published

2018-01-15

Issue

Section

Articles

How to Cite

CuO NPs incorporated single and double junction polymer solar cells. (2018). Experimental and Theoretical NANOTECHNOLOGY, 2(1), 31-42. https://doi.org/10.56053/2.1.31