Carbon nano tube field effect transistor based BBL-PTL full adders with level restorer structures

Authors

  • Srilatha Koteswara Department of Electronics and Communication Engineering V. F. S. T. R University (Vignan’s University), Vadlamudi, Guntur, Andhra Pradesh, India Author
  • Ishwarya Punati Department of Electronics and Communication Engineering V. F. S. T. R University (Vignan’s University), Vadlamudi, Guntur, Andhra Pradesh, India Author
  • Avireni Srinivasulu Department of Electronics and Communication Engineering V. F. S. T. R University (Vignan’s University), Vadlamudi, Guntur, Andhra Pradesh, India Author
  • SM-IEEE Department of Electronics and Communication Engineering V. F. S. T. R University (Vignan’s University), Vadlamudi, Guntur, Andhra Pradesh, India Author

DOI:

https://doi.org/10.56053/2.1.11

Keywords:

CNTFET, Branch-based logic, Pass transistor logic

Abstract

Full Adder (FA) is an important component not only in arithmetic circuits, but also in designing and development in all types of processors. The performance parameter of the one-bit full adder has been implemented to increase the speed of the system. In this paper two Carbon Nano Tube Field Effect Transistor (CNTFET) based level restorers are introduced to the sum circuit of the branch-based logic and pass transistor (BBL-PT) full adder. The proposed level restorers eliminate the existence of voltage step which is presented in the conventional full adder [1]. T.V.Rao et. al proposed level restorer circuits that have used +1.2 V supply rail voltage [2]. By using these level restorers, we could able to achieve good delay performance. The proposed 1-BIT full adder is graded high as it has less power consumption with the conventional 1-BIT full adders. The performance of the proposed CNTFET based BBL-PT FA with new level restorer structures are examined using Cadence with 32 nm CNTFET technology files with a supply rail voltage of +0.8 V. 

References

-[1] I. Hassoune, D. Flandre, Ian O’ Connor and Jean-Didier Legat, ULPFA: A new efficient design of a power-aware full adder, IEEE Transactions on Circuits and Systems-1: Regular papers, 57 (2010), 2066-2074.

-[2] T. V. Rao and Avireni Srinivasulu, Modified level restorers using current sink and current source inverter structures for BBL-PT full adder, Radioengineering, 21 (2012) 1297-1286.

-[3] D. Radhakrishnan, Low-voltage low-power CMOS full adder, IEE Proc. Circuits Devices Syst, 148 (2001) 19-24.

-[4] D. Datta and Debarshi Datta, A novel power efficient N-MOS based 1-bit full adder, 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), 2016 (1 - 5), DOI: 10.1109/MicroCom.2016.7522561.

-[5] Y. Safaei Mehrabani, and M. Eshghi, Noise and Process Variation Tolerant, Low-Power, High-Speed, and Low-Energy Full Adders in CNFET Technology, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, PP (9) (2016) 1-14. DOI: 10.1109/TVLSI.2016.2540071.

-[6] S. R. Prasad, Y. P. Sai and S. Naga Leela, Low leakage CNTFET full adders, in Proc. of 2015 Global Conference on Communication Technologies (GCCT), (2015) 174 - 179, DOI: 10.1109/GCCT.2015.7342647

-[7] R. Kumar and V. K. Pandey, A New 5-Transistor XOR-XNOR circuit based on the pass transistor logic, IEEE World Congress on Information and Communication Technologies, (2011) 667 – 671.

-[8] A. Srinivasulu, and K. Sivadasan, “Optical Exclusive-OR Gate”, Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 3 (1) (2003) 20-25. ISSN: 1516-7399, ISSN: 2179-1074.

-[9] Y.-B Kim, Challenges for nanoscale MOSFETs and emerging nanoelectranics, IEEE Trans. Electr. Electron. Mater, 11(3) (2010) 93-105.

-[10] Patcha Kavitha, M. Sarada, K.Vijayavardhan, Y. Sudhavani and Avireni Srinivasulu, Carbon nano tube field effect transistors based ternary Ex-OR and Ex-NOR gates, Current Nanoscience, 12 (4) (2016) 1-7.

-[11] I. Bejenari and M. Claus, Electron Back Scattering in CNTFETs, IEEE Transactions on Electron Devices, 63 (3) (2016) 1340 - 1345.

-[12] M. H. Moaiyeri, R. Faghih Mirzaee, K. Navi and A. Momeni, Design and analysis of a high-performance CNFET-based Full Adder, Int. J. Electronics, 99 (1) (2012) 113-130.

-[13] M. R. Reshadinezhad, M. H. Moaiyeri and K. Navi, An Energy-Efficient full adder cell using CNFET Technology, IEICE Transactions on Electronics, E95-C(4) (2012) 744-751.

-[14] K. Navi, H. Hossein Sajedi, R. Faghih Mirzaee, M. H. Moaiyeri, A. Jalali and O. Kavehei, High-Speed Full Adder Based on Minority Function and Bridge Style for Nanoscale, Integration The VLSI Journal (Elsevier), 44 (3) (2011) 155-162.

-[15] M. H. Moaiyeri, K. Navi and O. Hashemipour, Design and Evaluation of CNFET-based Quaternary Circuits, Circuits, Systems, and Signal Processing, 31 (5) (2012) 1631–1652.

-[16] J. Liang, L. Chen, J. Han, and F. Lombardi, Design and Evaluation of Multiple Valued Logic Gates Using Pseudo N-Type Carbon Nanotube FETs, IEEE Transaction on Nanotechnology, 13 (4) (2014) 695 – 708.

-[17] K. Navi, M. Rashtian, A. Khatir, P. Keshavarzian, O. Hashemipour, High speed capacitor–inverter based carbon nanotube full adder, Nanoscale Res. Lett., 5 (5) (2010) 859–862.

-[18] M. H Moaiyeri, A. Doostaregan, K. Navi, Design of energy-efficient and robust ternary circuits for nanotechnology, IET Circuits Devices Syst., 5 (4) (2011) 285–296.

-[19] P. Keshavarzian, K. Navi, Efficient carbon nanotube galois field circuit design, IEICE Electron. Express, 6 (9) (2009) 546–552.

-[20] M. Ossaimee, S. Gamal and A. Shaker, Gate dielectric constant engineering for suppression of ambipolar conduction in CNTFETs, Electronics Letters, 51 (6) (2015) 503 - 504.

-[21] S. Mothes, M. Claus and M. Schröter, Toward Linearity in Schottky Barrier CNTFETs, IEEE Transactions on Nanotechnology, 14 (2) (2015) 372 - 378.

-[22] J. Deng and H.-S.P Wong, A Compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application – part i: model of the intrinsic channel region, IEEE Trans. Electron Devices, 54 (12) (2007) 3186–3194.

-[23] J. Deng, H. S. P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application - part ii: full device model and circuit performance benchmarking, IEEE Trans. Electron Devices, 54 (12) (2007) 3195-3205.

-[24] M. Schröter, M. Haferlach, A. Pacheco-Sanchez, S. Mothes, P. Sakalas and M. Claus, A Semiphysical Large-Signal Compact Carbon Nanotube FET Model for Analog RF Applications, IEEE Transactions on Electron Devices, 62 (1) (2015) 52 - 60.

-[25] G. Cho and F. Lombardi, Circuit-Level Simulation of a CNTFET With Unevenly Positioned CNTs by Linear Programming, IEEE Transactions on Device and Materials Reliability, 14 (1) (2014) 234 - 244.

-[26] A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Yenilmez, R. G. Gordon, M. Lundstrom, H. Dai, Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays, Nano Letters, 4 (2004) 1319-1322.

-[27] A. Javey, R. Tu, D. B. Farmer, J. Guo, R. G. Gordon and H. Dai, High Performance N- Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts, Nano Letters, 5 (2005) 345-348.

-[28] Stanford CNTFET Model, https://nano.stanford.edu/stanford-cnfet-model

-[29] A. Imran, Md. Hasan, Aminul Islam and S. A. Abbasi, Optimised design of a 32 nm CNTFET based low power Ultrawideband CCII, IEEE Transactions on Nanotechnology, 11 (6) (2012) 1100-1109.

-[30] J. W. Mintmire and C. T. White, Universal density of states for carbon nanotubes, Phys. Rev. Lett., 81 (12) (1998) 2506–2508.

-[31] J. Liang, L. Chen, Jie Han and F. Lombardi, Design and Evaluation of Multiple Valued Logic Gates Using Pseudo N-Type Carbon Nanotube FETs, IEEE Transactions on Nanotechnology, 13 (4) (2014) 695 – 708.

-[32] A. Raychowdhury and K. Roy, Carbon-nanotube-based voltage-mode multiple-valued logic design, IEEE Trans. Nanotechnol, 4 (2) (2005) 168-179.

-[33] P. Keshavarzian and K. Navi, Efficient carbon nanotube galo is field circuit design, IEICE Electron. Express, 6 (9) (2009) 546-552.

-[34] M. Hossein, M. Faghih, Akbar, Keivan, Omid, A universal method for designing low-power carbon nanotube FET-based multiple-valued logic circuits, IET Comput. Digit. Tech., 7 (4) (2013) 167-181.

-[35] Jie deng and H.-S. Phillip Wong, A compact SPICE model for Carbon-Nanotube Field-Effect transistors including non-idealities and its applications-Part-I: Model of the intrinsic channel region, IEEE Transactions on Electronic Devices, 54 (12) (2007) 3186-3194.

-[36] S. Lin, Y. Kim, F. Lombardi, CNTFET-based design of ternary logic gates and arithmetic circuits, IEEE Trans. Nanotechnol., 10 (2) (2011) 217-225.

-[37] M. H. Moaiyeri, A. Doostaregan, K. Navi, Design of energy-efficient and robust ternary circuits for nanotechnology, IET Circuits Devices Syst., 5 (4) (2011) 285-296.

-[38] K. You, K. Nepal, Design of a ternary static memory cell using carbon nanotube-based transistors, IET Micro Nano Lett, 6 (6) (2011) 381-385.

-[39] P. L. McEuen, M. Fuhrer, H. Park, Single-walled carbon nanotube electronics, IEEE Trans. Nanotechnol, 1 (1) (2002) 78-85.

-[40] A. Paulthurai, B. Dharmaraj, Low-power and high-performance 1-bit set full-adder, Int. J. Nanoelectronics and Materials, 6 (2) (2013) 105-111.

-[41] E. Hosseini, Propagation Effects in Carbon Nanoelectronics, Int. J. Nanoelectronics and Materials, 8 (2015) 91-98.

Downloads

Published

2018-01-15

Issue

Section

Articles

How to Cite

Carbon nano tube field effect transistor based BBL-PTL full adders with level restorer structures. (2018). Experimental and Theoretical NANOTECHNOLOGY, 2(1), 11-20. https://doi.org/10.56053/2.1.11