Surface plasmon polariton in Metal-Insulator-Metal configuration

Authors

  • Rida Ahmed Ammar Theoretical Physics Laboratory, Faculty of Sciences, Physics Department, University of Tlemcen, Tlemcen, Algeria Author

DOI:

https://doi.org/10.56053/2.1.1

Keywords:

Drude-Lorentz, Surface Plasmon polariton, Wave propagation, Optical waveguides

Abstract

The optics of the surface plasmon resonance has been known for a long time. In the configuration multilayer, the optical coupling of a wave incident to collective oscillations of electrons along an interface between a metal and a dielectric is governed by the thickness of metal and gap layers. The surface Plasmon excitations excited by an electromagnetic wave in the visible band (λ= 633 nm). For the metal, in particular a frequency on their dielectric permittivity dependence and described by the Drude-Lorentz model and Using the effective-index approach and an explicit expression for the propagation constant of gap surface plasmon polaritons (G-SPPs) obtained for moderate gap widths.

References

-[1] Zhanghua Han and Sergey I Bozhevolnyi ‘’ Radiation guiding with surface plasmon polaritons, ‘’Rep. Prog. Phys. 76 (2013) 016402 (37pp).

-[2] Jiri Homola, “Electromagnetic Theory of Surface Plasmons,” Springer Ser Chem Sens Biosens, 4: 3–44, (2006).

-[3] Jun Li, Chien-Hui Wen, Sebastian Gauza, Ruibo Lu, and Shin-Tson Wu’’ Refractive Indices of Liquid Crystals for Display Applications, ‘’IEEE/OSA journal of display technology, vol. 1, no. 1, september (2005).

-[4] Jun Li, Sebastian Gauzia, and Shin-Tson Wu, ‘’ High temperature-gradient refractive index liquid crystals, ‘’ Vol. 12 No. 9 / optics express (2004) 2002-2010.

-[5] Bedjaoui L, Gogibus N, Ewen B et al. Preferential salvation of the eutectic mixture of liquid crystal E7 in a polysiloxane. Polymer. (2004) 45: 6555-6560.

-[6] A. D. Rakic´, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied Optics, vol. 37, no. 22, pp. 5271–5283,(1998).

-[7] Prade, B., J.Y. Vinet, and A. Mysyrowicz, ‘’Guided waves in planar heterostructures with negative dielectric constant, ‘’ Phys. Rev. B, (1991).44(24): p. 13556-13572.

-[8] E.N. Economou, ‘’ Surface plasmons in thin films’’ Phys. Rev. 182, 539 (1969).

-[9] R. Zia, M.D. Selker, P.B. Catrysse, M.L. and Brongersma, J. Opt. Soc. Am. A, 21, 2442 (2004).

-[10] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, ‘’ Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared, ‘’ Applied Optics, Vol. 22, No. 7 (1983) 1099-1120.

-[11] S. I. Bozhevolnyi and T. Søndergaard, ‘’ General properties of slow-plasmon resonant nanostructures : nano-antennas and resonators, ‘’ (2007) / Vol. 15, No. 17 / optics express 10869.

-[12] Jiri Homola,” Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev, 108, 462-493, (2008).

-[13] A. Vial, A. S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle. Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B, 71:085416, 2005.

-[14] Dionne, J.A., et al., Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B, 2006. 73(035407).

-[15] T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes,1 and E. Hendry, ‘’ Surface plasmon mediated transmission of subwavelength slits at THz frequencies, ‘’ Phys. Rev. B, 77, 113411, (2008).

-[16] Jianjun Chen & Zhi Li & Yujiao Zou & Zhongliang Deng & Jinghua Xiao & Qihuang Gong, "Coupled-Resonator-Induced Fano Resonances for Plasmonic Sensing with Ultra-High Figure of Merits, "Plasmonics(2013).

-[17] Z.-D. Zhang & H.-Y. Wang & Z.-Y. Zhang, "Fano Resonance in a Gear-Shaped Nanocavity of the Metal–Insulator–Metal Waveguide, "Plasmonics (2013) 8:797–801.

-[18] YeLiu · FeiZhou · BoYao · JieCao · Qinghe Mao, "High-extinction-ratioandlow-insertion-loss Plasmonic Filter with Coherent Coupled Nano-cavity Array in a MIM Waveguide, "Plasmonics(2013)8:1035–1041.

-[19]Sonia M. García-Blanco, Markus Pollnau and Sergey I. Bozhevolnyi, "Theoretical study of loss compensation in long-range dielectric loaded surface plasmon polariton waveguides, "MINAP 2012 (85-88).

-[20]Yao Kou and Xianfeng Chen, "Multimode interference demultiplexers and splitters in metal-insulator-metal waveguides, "(2011) / Vol. 19, No. 07 / optics express (6042-6047).

-[21]Zhe Yu & Ruisheng Liang & Pixin Chen & Qiaodong Huang & Tingting Huang & Xingkai Xu, "Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide, "Plasmonics (2012) 7:603–607.

-[22]Kunhua Wen & Lianshan Yan & Wei Pan & Bin Luo & Zhen Guo & Yinghui Guo & Xiangang Luo, "Design of Plasmonic Comb-Like Filters Using Loop-Based Resonators, "Plasmonics (2013) 8:1017–1022.

-[23] F. I. Baida and A. Belkhir, ‘’ Finite Difference Time Domain Method for Grating Structures, Gratings: Theory and Numeric Applications,’’ E. Popov (Ed.) (2012) 9.1-9.36.

-[24] http://optiwave.com

Downloads

Published

2018-01-15

Issue

Section

Articles

How to Cite

Surface plasmon polariton in Metal-Insulator-Metal configuration. (2018). Experimental and Theoretical NANOTECHNOLOGY, 2(1), 1-10. https://doi.org/10.56053/2.1.1