Natural convection in inclined channel for air cooling of photovoltaic panels

Authors

  • A. H. Laatar Department of Physics, Renewable Energy Laboratory, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia Author
  • S. Kennich LETTM, Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El Manar, 2092- Tunis, Tunisia Author
  • J. Balti Faculty of Sciences of Bizerte, University of Carthage, 7021- Jarzouna, Tunisia Author
  • N. Badi Department of Physics, Renewable Energy Laboratory, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia Author

DOI:

https://doi.org/10.56053/3.3.405

Keywords:

PVs, Analysis, Characterization

Abstract

Reducing the operating temperature of a photovoltaic (PV) module is an effective way to improve efficiency and prevent damage from overheating. The present paper focuses on the study of the effect of inclination on air natural convection in an asymmetrically heated channel (at uniform heat flux), in laminar regime. This configureuration models the passive and natural air-cooling of PV panels by inclined chimneys. The computational procedure solves the unsteady two-dimensional Navier-Stokes and energy equations by a finite volume approach while the projection method decouples the pressure from the velocity. The heat transfer and fluid flow are analyzed for a wide range of modified Rayleigh numbers varying from 102 to 105 and for inclination angles between 15o and 90o with respect to horizontal position. The results show that the mass flow rate and the average Nusselt number increase with the angle of inclination as well as with the modified Rayleigh number. However, a significant reduction in heat transfer rate and induced flow rate is observed for the low angles of inclination. To enhance the cooling of the PV panel, extensions are added at the inlet and outlet of the channel. The simulations show that only the downstream extensions of the channel are effective in improving the induced mass flow rate and therefore the convective heat transfer.

References

-[1] M. Sandberg, B. Moshfegh, Renewable Energy 8 (1996) 254

-[2] M. Sandberg, B. Moshfegh, Building and Environment 37 (2002) 211.

-[3] E. Cuce, T. Bali, S. A. Sekucoglu, International Journal of Low-Carbon Technologies 6 (2011) 299

-[4] F. Grubišić-Čabo, S. Nižetić, T. Giuseppe Marco, Transactions of FAMENA 40 (2016) 63

-[5] G. He, J. Zhang, S. Hong, Solar Energy 136 (2016) 614

-[6] M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris, eccomas congress (2016)

-[7] B. Brangeon, P. Joubert, A. Bastide, International Journal of Thermal Sciences, 95, (2015) 64

-[8] R. Mazón-Hernández, et al., International Journal of Photoenergy, http://dx.doi.org/10.1155/2013/830968 Article ID 830968, 10 pages, (2013)

-[9] N. Chami, A. Zoughaib, Energy Build. 42 (2010) 1267

-[10] C.Popa, D.Ospir, S. Fohanno, C. Chereches, Energy Build. 50 (2012) 229

-[11] C. Daverat, H. Pabiou, C. Menezo, H. Bouia, S. Xin, Exp. Therm. Fluid Sci. 44 (2013) 182

-[12] R. Bassiouny, N. Korah, Energy Build. 41 (2009) 190

-[13] J. K. Tonui, Y. Tripanagnostopoulos, Renewable Energy 32 (2007) 623

-[14] J. K. Tonui, Y. Tripanagnostopoulos, Solar Energy 82 (2008) 1

-[15] L.F.A. Azevedo, E.M. Sparrow, J. Heat Transfer 107 (1985) 893.

-[16] N. Onur, M. Sivrioglu, M.K. Aktas, Heat Mass Transfer 32 (1997) 471

-[17] M. Onur, M.K. Aktas, Int. Comm.Heat Mass Transfer 25 (1998) 389

-[18] S. Baskaya, M.K. Aktas, N. Onur, Heat Mass Transfer 35 (1999) 273

-[19] O. Manca, S. Nardini, Heat Transfer Eng. 20 (1999) 64

-[20] T. S. Arun Samuel, M. Karthigai Pandian, A. Shenbagavalli, A. Arumugam, Exp. Theo. NANOTECHNOLOGY 2 (2018) 151

-[21] B. Brangeon, P. Joubert, A. Bastide, International Journal of Thermal Sciences 95 (2015) 64

-[22] D. Talukdar, C. Li, M. Tsubokura, International Journal of Heat and Mass Transfer 130 (2019) 83

-[23] A. Habibzadeh, R. Zeighami, Journal of Experimental and Theoretical Nanotechnology Specialized Researches 1, (2017) 171

-[24] A. H. Laatar, M. Benahmed, A. Belghith, P. Le Quéré, Journal of Wind Engineering and Industrial Aerodynamics 90 (2002) 617.

-[25] S. Taieb, A. H. Laatar, J. Balti, International Journal of Thermal Sciences 74 (2013) 24

-[26] Z. Nasri, A. H. Laatar, J. Balti, International Journal of Thermal Sciences 90 (2015)122

-[27] Z. Nasri, Y. Derouich, A. H. Laatar, J. Balti, Heat Mass Transfer 54 (2018) 1511

-[28] B. W. Webb, D. P. Hill, Journal of Heat Transfer 111 (1989) 649

-[29] D. Talukdar, C. Li, M. Tsubokura, International Journal of Heat and Mass Transfer, 128 (2019) 794.

Downloads

Published

2019-07-15

Issue

Section

Articles

How to Cite

Natural convection in inclined channel for air cooling of photovoltaic panels . (2019). Experimental and Theoretical NANOTECHNOLOGY, 3(3), 405-426. https://doi.org/10.56053/3.3.405