Engineered ‘Nanomaterials by design’ theoretical studies experimental validations current and future prospects
DOI:
https://doi.org/10.56053/3.3.301Keywords:
Energy Band Structure, Band Structure Engineered Nanocrystals, nanostructured material species derived from inorganic, organic and biomolecular material speciesAbstract
Modulating the electron energy band structure of a nano crystalline material by varying its size, shape, and constituent species amounts to practically designing the nano size material building blocks for arriving at a known set of related physico-chemical properties in terms of the internal electronic structures for a given organization of the constituent species via covalent and non-covalent interactions operating at different length scales. In order to explore further possibilities of using synergistic combinations of nano structured materials derived from inorganic, organic and polymeric species particularly knowing through their chemical bonds involved in different forms, it is equally necessary to know about the interaction pathways among the constituent species, as mentioned above, in addition to the biomolecular species, where they form a variety of 3-d supramolecular organizations arising out of self-assembly and self-organization. After having a clear picture of these basic processes involved in the internal and external organization of the hierarchical supramolecular structures, the next step is to explore the prospects of incorporating some sort of intelligent features starting from using the biomolecular species like polypeptides, proteins and enzymes. What is emerging from the current developments taking place in the related areas can be foreseen from this review particularly viewed from material science point of view.
References
-[1] S. Ahmad, Microwave and Millimeter wave semiconductor materials technology, Tata-McGrawHill, N. Delhi, (1998)
-[2] C. Kittel, Introduction to Solid State Physics, 8th Edition, John Wiley & Sons, Inc., (2004)
-[3] Y. Yin, A. P. Alivisatos, Nature 437 (2005) 664
-[4] D. V. Talapin, J.-S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem. Rev. 110(1) (2010) 389
-[5] B. Diaconescu, L. A. Padilha, P. Nagpal, B. S. Swartzentruber, V. I. Klimov, Phys. Rev. Lett. 110 (2013) 127406
-[6] S. Ahmad, Ind. J. Engineering and Material Science 12 (2005) 299
-[7] S. Ahmad, Int. J. Nanoelectronics and Materials 8 (2015) 129
-[8] S. Ahmad, Int. J. Material Science 6(1) (2016)
-[9] S. Ahmad, J. Nano pharmaceutics and Drug Delivery 3(1) (2016) 1
-[10] T. Jevremovic, Nuclear Principles in Engineering, Chapter 2, Atomic Structure, Springer US; Springer Science+Business Media, LLC (2009).
-[11] Chemistry LibreTexts, The Atomic Spectrum of Hydrogen; Text available @ https://chem.libretexts.org/LibreTexts/Solano_Community _College/ Chem_160 /Chapter_07%3A_Atomic_Structure_and_Periodicity/7.03_The_Atomic_ Spectrum_of_Hydrogen
-[12] H. B. Gray, Electrons and Chemical Bonding, W. A. Benjamin, Inc. New York. (1965); http://resolver.caltech.edu/CaltechBOOK: 1965.003
-[13] MO-Theory, R. S. Mulliken Lecture, December 12, (1966). Text @ www.nobelprize.org/nobel_prizes/chemistry/laureates/1966/mulliken-lecture. pdf
-[14] M. O. Scully, R. E. Allen, Y. Dou, K. T. Kapale, M. Kim, G. Chen A. Svidzinsky. Chemical Physics Letters 389 (2004) 385
-[15] D. Sprecher, C. Jungen, W. Ubachs, F. Merkt, Farday Discussions 150 (2011) 51.
-[16] P. Atkins, R. Friedman, Molecular Quantum Mechanics, Fourth Edition; Oxford University Press, Great Clarendon Street, Oxford AC OX2 6DP
-[17] M. Orchin, R. S. Macomber, A. R. Pinhas, R. M.Wilson, The Vocabulary and Concepts of Organic Chemistry, 2nd ed.; Wiley-Interscience: Hoboken, NJ, (2005)
-[18] M. Ratner, Nature Nanotechnology 8(6) (2013) 378
-[19] Y. Chen1, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O Jeppesen, K. A. Nielsen, J. F. Stoddart, R. S. Williams, Nanotechnology 14 (2003) 462
-[20] Polar Covalent Bonds: Electronegativity, Lecture Notes available @ www.csus.edu/indiv/s/spencej/chem%2031%20summer%2014%20web/ day% 202% 20lecture.pdf
-[21] S. Richard, F. Aniel, G. Fishman, Phys. Rev. B 70 (2005) 235204; Erratum Phys. Rev. B 71 (2005) 169901
-[22] R. Koole, G. Allan, C. Delerue, Andries Meijerink, D. l. Vanmaekelbergh, A. J. Houtepen, small 4(1) (2008) 127
-[23] T. C. Fischer, D. M. Crenshaw, S. B. Kraemer, H. R. Schmitt, R. F. Mushotsky, J. P. Dunn, Astrophys. J. 727(71) (2011)
-[24] X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, U. Kortshage, Nanotechnology 19 (24) (2008) 245603
-[25] O. V. Prezhdo, Acc. Chem. Res., 42 (2009) 2005
-[26] C. M. Isborn, O. V. Prezhdo, J. Phys. Chem. C, 113 (2009) 12617
-[27] T. C. Fischer, D. M. Crenshaw, S. B. Kraemer, H. R. Schmitt, M. L. Trippe, Astron. J. 140(2) (2010)
-[28] D. J. Norris, A. L. Efros, S. C. Erwin, Science 319(5871) (2008) 1776
-[29] B. G. Lee, J. W. Luo, N. R. Neale, M. C. Beard, D. Hiller, M. Zacharias, P. Stradins, A. Zunger, Quasi-Direct Optical Transitions in Silicon Nanocrystals with Intensity Exceeding the Bulk, Nano Lett. 16(3) (2016) 1583
-[30] M. G. Bawendi, M. L. Steigerwald, L. E. Brus, Annu. Rev. Phys. Chem. 41 (1990) 477
-[31] S. I. Stoeva, B. L. V. Prasad, S. Uma, P. K. Stoimenov, V. Zaikovski, C. M. Sorensen, K. J. Klabunde, J. Phys. Chem. B 107 (30) (2003): 7441
-[32] C. Petit, Z. L. Wang, and M. P. Pileni, J. Phys. Chem. B 109 (2005) 15309
-[33] G. Zheng, MRS Spring Meeting, MRS Proc. 924 (2006)
-[34] M. P. Pileni, J. Phys.: Condens. Matter 23 (2011) 503102
-[35] Y. Mi, D. Yuan, Y. Liu, J. Zhang, Y. Xiao, Mater. Chem. and Phys. 89(2–3) (2005) 359
-[36] R. M. A. Tehrani, S. A. Ghani, J. Colloid and Inter. Sci. 339(1) (2009) 125
-[37] S. Bera, I. Manna. J. Alloys & Compounds, 417(1–2) (2006) 104
-[38] Z. Zhao, K. Zhang, J. Zhang, K. Yang, C. He, F. Dong, B. Yang, Colloids and Surfaces A: Physicochem. Eng. Aspects 355 (2010) 114
-[39] X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, H. Zhang, Nature Communications 2, Article number: 292 (2011)
-[40] H.-W. Ting, Y.-K. Lin, Y.-J. Wu, L.-J. Chou, C.-J. Tsai, L.-J. Chen. J. Mater. Chem. C 1 (2013) 3593
-[41] B. Wang, S. Yin, G. Wang, A. Buldum, J. Zhao, Phys Rev. Lett. 86(10) (2001) 2046
-[42] N. Zhou, D. Li, D. Yang, Nanoscale Research Letters 9 (2014) 302
-[43] M. Brack, Rev. Mod. Phys. 65 (1993) 677
-[44] M. A. El-Syed, Acc. Chem . Research 34(4) (2001) 257
-[45] P. Jena, A. W. Castleman Jr., PNAS 103(28) (2006) 10560
-[46] E. G. Noya, J. P. K. Doye, D. J. Wales, and A. Aguado, Eur. Phys. J. D 43 (2007) 57
-[47] X. Li, A. E. Kuznetsov, H.-F. Zhang, A. I. Boldyrev, L.-S. Wang, Science 291 (2001) 859
-[48] H. Bai, H. J. Zhai, S. D. Li, L. S. Wang, PhysChemChemPhys. 15(24) (2013) 9646
-[49] X. Zhang, G. Liu, G. Ganteför, K. H. Bowen, A. N. Alexandrova, J. Phys. Chem. Lett. 5 (2014) 1596
-[50] A. L. Roest, A. J. Houtepen, J. J. Kelly, D. Vanmaekelbergh, Faraday Discuss. 125 (2004) 55
-[51] T. Wang, J. Zhuang, J. Lynch, O. Chen, Z. Wang, X. Wang, D. LaMontagne, H. Wu, Z. Wang, Y. C. Cao, Science 338(6105) (2012) 358
-[52] C. B. Murray, C. R. Kagan, M. G. Bawendi, Science 270(5240) (1995) 1335
-[53] C. T. Black, C. B. Murray, R. L. Sandstrom, S. Sun, Science 290(5494) (2000) 1131
-[54] S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 287(5460) (2000) 1989
-[55] Y. Yin, Y. Xia, J. Am. Chem. Soc. 125(8) (2003) 2048
-[56] Z. Tang, Z. Zhang, Y. Wang, S. C. Glotzer, N. A. Kotov, Science 314(5797) (2006) 274
-[57] A. Tao, P. Sinsermsuksakul, P. Yang, Nat. Nanotechnol 2(7) (2007) 435
-[58] M. Rycenga, J. M. McLellan, Y. Xia, Adv. Mater. 20(12) (2008) 2416
-[59] Z. Quan, J. Fang, Nano Today 5(5) (2010) 390
-[60] Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer, N. A. Kotov, Nat. Nanotechnol. 6(9) (2011) 580
-[61] R. J. Macfarlane, M. R. Jones, B. Lee, E. Auyeung, C. A. Mirkin, Science 341(6151) (2013) 1222
-[62] C. Knorowski, S. Burleigh, A. Travesset, Phys. Rev. Lett. 106(21) (2011) 21550
-[63] P. F. Damasceno, M. Engel, S. C. Glotzer, Science 337(6093) (2012) 453
-[64] A. P. Kaushik, P. Clancy, J. Comput. Chem. 34(7) (2013) 5232
-[65] Z. Quan, D. Wu, J. Zhu, W. H. Evers, J. M. Boncella, L. D. A. Siebbeles, Z. A. Navrotsky, H. Xu, PNAS 111(25) (2014) 9054
-[66] B. Wang, S. Yin, G. Wang, A. Buldum, J. Zhao, Phys Rev. Lett. 86(10) (2001) 2046
-[67] A. A. Middleton, N. S. Wingreen. Phys. Rev. Lett. 71 (1993), 3198
-[68] R. P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Henderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin, R. Reifenberger, Science 272 (1996)- 1323
-[69] H. Bach, N. Neuroth (Editors), The Properties of Optical Glass. Schott Series on Glass and Glass Ceramics, Springer-Verlag Berlin Heidelberg, Springer-Verlag Berlin Heidelberg (1998)
-[70] B. O'Regan, M. Graetzel, Nature 353 (1991) 737
-[71] L. Cao, H. Chen, M. Wang, J. Sun, X. Zhang, F. Kong, J. Phys. Chem. B 106 (35) (2002) 8971
-[72] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature 370 (1994) 354
-[73] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 101 (1997) 9463.
-[74] M. V. Artemyev, V. Sperling, U. Woggon, J. Appl. Phys. 81 (1997) 6975
-[75] M. C. Schlamp, X. Peng,A. P. Alivisatos, J. Appl. Phys. 82 (1997) 5837
-[76] S. Yakunin, D. N. Dirin, L. Protesescu, M. Sytnyk, S. Tollabimazraehno, M. Humer, F. Hackl, T. Fromherz, M. I. Bodnarchuk, M. V. Kovalenko, W. Heiss, ACS Nano. 8(12) (2014) 12883
-[77] M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, S. V. Gaponenko, H. Jaschinski, U. Woggon, Phys. Stat. Sol. (b) 224(2) (2001) 393
-[78] M. V. Artemyev, U. Woggon, H. Jaschinski, L. I. Gurinovich, S. V. Gaponenko, J. Phys. Chem. B 104 (2000) 11617
-[79] M. V. Artemyev, A. I. Bibik,L. I. Gurinovich,S. V. Gaponenko, U. Woggon, Phys. Rev. B 60 (1999) 1504
-[80] B. S. Kim, M. A. Islam, L. E. Brus, I. P. Hermana, J. App. Phys. 89(12) (2001) 812
-[81] A. M. Smith, S. Nie, Acc. Chem. Res. 43(2) (2010) 190
-[82] F. Rioux, A Molecular Orbital Approach to Bonding in Methane; Text available @ www.users.csbsju.edu/~frioux/h2bond/ MethaneMOBonding.pdf
-[83] W.R. Salaneck, R. H. Friend, J. L. Breddas, Physics Reports 319 (1999) 231
-[84] D. K. Seo, R. Hoffmann, J. Solid State Chem. 147(1)(1999) 26
-[85] R. Hoffmann, C. Janiak, C. Kollmar, Macromolecules 24(13) (1991) 3725
-[86] N Tessler, S. C. Graham, R. H. Friend, Phys. Rev. B 57 (20) (1998) 12951
-[87] M. P. Samanta, W. Tian, S. Datta, J. I. Henderson, C. P. Kubiak, Phys Rev B Condens Matter 53(12) (1996) R7626
-[88] J. L. Brédas, J. P. Calbert, D. A. da Silva Filho, J. Cornil, PNAS 99(9) (2002) 5804
-[89] A. J. Heeger, S. Kivelson, J. R. Schrieffer, W. P. Su. Rev. Mod. Phys. 60 (1988) 781,
-[90] S. Ahmad, O. P. Daga, W. S. Khokle, Phys. Stat. Solidi. B 40(2) (1970) 631
-[91] S. J. F. Byrnes, (2008); Text available @ www.scribd.com/document/ 47249066/Basic-theory-and-phenomenology-of-polarons-2008
-[92] M. A. Littlejohn, J. R. Hauser, T. H. Glisson, Solid-State Electronics 21(1) (1978) 107
-[93] S. Hoshi, M. Itoh, T. Marui, H, Okita, Y. Morino, I. Tamai, F. Toda, S. Seki, T. Egawa, The Japan Society of Applied Physics, Appl. Phys. Express 2(6)(2009)
-[94] Chapter 9, Two Dimensional Electron Gas, Quantum Wells & Semiconductor Superlattices; Text available @ http://web.mit.edu/6.732/ www/new_part1b.pdf
-[95] J. Roncali, Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications, Macromol. Rapid Commun. 28(2007) 1761
-[96] R. Gutzler, Phys. Chem. Chem. Phys. 18 (2016) 29092
-[97] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, Alan G. MacDiarmid, Phys. Rev. Lett. 39 (1977) 1098
-[98] J. Roncali, Chem. Rev. 92 (1992) 711e738
-[99] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglla, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 3776 (1995) 498
-[100] H. S. O. Chan, S. C. Ng, Prog. Polym. Sci. 23 (1998) 1167
-[101] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chemie. Int. Edition 37(4) (1998) 402
-[102] J. Roncali, J. Mater. Chem. 9 (1999) 1875
-[103] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, W. R. Salaneck, Nature 397 (1999) 121
-[104] D. L. Ellis, M. R. Zakin, L. W. Bernstein, M. F. Rubner, Anal. Chem. 68(5) (1996) 816
-[105] C. E. Scmidt, V. R. Shastri, J. P. Vacanti, R. Langer, Proc. Natl. Acad. Sci. USA 94 (1997) 8948
-[106] K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, Chem. Rev. 100(7) (2000) 2595
-[107] D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev. 100(7)(2000) 2537
-[108] C. A. Thomas, Dissertation presented to Graduate School of University of Florida for PhD degree, 2002.
-[109] H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 11(8) (1999) 605
-[110] J. Roncali, Chem. Rev. 97 (1997) 173
-[111] F. Wudl, M. Kobayashi, A. J. Heeger, J. Org. Chem. 49 (1984) 3382
-[112] M. Kobayashi, N. Colaneri, M. Boysel, F. Wudl, A. J. Heeger, J. Chem. Phys. 82 (1985) 5717
-[113] Q. T. Zhang, J. M. Tour, J. Am. Chem. Soc. 120(22) (1998) 5355
-[114] Y. Yao, Q. T. Zhang, J. M. Tour. Macromolecules 24 (1998) 8600
-[115] D. Hu, J. Yu, K. Wong, B. Bagchi, P. J. Rossky, P. F. Barbara, Nature 405 (2000) 1030.
-[116] R. C. Smith, H. Deng, W. M. Fischer, D. L. Gin, Mater. Res. Soc. Symp. Proc. 488 (1998) 419
-[117] E. W. Havinga, E. E. ten Hoeve, H. Wynberg, Synt. Metals 55(1) (1993) 299
-[118] J. Hou, M.-H. Park, S. Zhang, Y. Yao, L.-M. Chen, J.-H. Li, Y. Yang, Macromolecules 41 (2008) 6012
-[119] H. Zgou, S. Boussaidi, A. Zahlou, M. Bouachrine, M. Hamidi, Int. J. Adv. Res. in Comp. Sci. and Software Engg. 4(5) (2014) 10
-[120] O. A. Shenderova, V. V. Zhirnov, and D. W. Brenner, Crit. Rev. Solid State Mater. Sci. 27 (2002) 227
-[121] F. Schwierz, Nature Nanotechnology 5 (2010) 487
-[122] J. W. A. van der Velden, F. A. Vollenbroek, J. J. Bour, P. I. Beurskens, J. M. M. Smits, W. P. Bosman, J. R. Neth, Chem. Soc. 100 (1981) 148
-[123] C. E. Briant, B. R. C. Theobald, J. W. White, C. K. Bell, D. M. P. Mingos, J. Chem. Soc., Chem. Comm. (1981) 201
-[124] G. Schmid, R. Boese, R. Pfeil, F. Bandermann, S. Meyer, G. H. M. Calis, J. W. A. van der Velden, Chem. Ber. 114 (1981) 3634
-[125] H. H. A. Smit, R. C. Thiel, L. J. de Jongh, Z. Phys. D 12 (1989) 193
-[126] M. C. Fairbanks, R. E. Benfield, R. J. Newport, G. Schmid, Solid State Comm. 73 (1990) 431
-[127] P. D. Cluskey, R. J. Newport, R. E. Benfield, S. J. Gurmann, G. Schmid, Z. Phys. D 26 (1993) 8
-[128] G. Schmid, R. Pugin, Th. Sawitowski, U. Simon, B. Marler, Chem. Commun. (1999) 1303
-[129] G. Schmid, B. Corain, Eur. J. Inorg. Chem. (2003) 3081
-[130] B. K. Teo, X. Shi, H. Zhang, J. Am. Chem. Soc. 114 (1992) 2743
-[131] P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, R. D. Kornberg, Science 318(5849) (2007) 430
-[132] M. W. Heaven, A. Dass, P. S. White, K. M. Holt, R. W. Murray, J. Am. Chem. Soc. 130(12) (2008) 3754
-[133] H. Qian, W. T. Eckenhoff, Y. Zhu, T. Pintauer, R. Jin, J. Am. Chem. Soc. 132(24) (2010) 8280
-[134] B. G. Wang, X. B. Wang, W. J. Lou, J. C. Hao, J. Colloid Interface Sci. 362 (2011) 5
-[135] V. Myshlyavtsev, P. V. Stishenko, Adsorption 19(2-4) (2013) 795
-[136] B. Fresch, F. Remacle, J. Phys. Chem. C 118 (18) (2014) 9790
-[137] G. Corthey, J. A. Olmos-Asar, G. Casillas, M. M. Mariscal, S. Mejía-Rosales, J. C. Azcárate, E. Larios, M. José-Yacamán, R. C. Salvarezza,- M. H. Fonticelli, J. Phys. Chem. C, 2014, 118 (42) (2014) 24641
-[138] N. Jian, R. E. Palmer, J. Phys. Chem. C 119 (20) (2015) 11114
-[139] H.-G. Boyen, G. Kästle, F. Weigl, B. Koslowski, C. Dietrich, P. Ziemann, J. P. Spatz, S. Riethmüller, C. Hartmann, M. Möller, G. Schmid, M. G. Garnier, P. Oelhafen, Science 297 (2002) 1533
-[140] Y. L. Mikhlina, E. A. Vishnyakova, A. S. Romanchenkoa, S. V. Saikova, M. N. Likhatski, Y. V. Larichevc, F. V. Tuzikov, V. I. Zaikovskii, S. M. Zharkov, Appl. Surf. Sci. 297 (2014) 75
-[141] H. Li, H.-J. Xiao, T.-S. Zhu, H.-C. Xuan, M. Li, J. Phys. Chem. C 119 (21) (2015) 12002
-[142] J. D. Aiken III, R. G. Finke, J. Mole. Catalysis A - Chemical 145(1-2) (1999) 1
-[143] A. Kraynov, T. E. Müller (2011). Concepts for the Stabilization of Metal Nanoparticles in Ionic Liquids, Applications of Ionic Liquids in Science and Technology, S. Handy (Editor), ISBN: 978-953-307- 605-8.
-[144] E. J. Verwey, J. T. G. Overbeek, Theory of the stability of lyophobic colloids, Elsevier, Amsterdam, (1948).
-[145] J. Lekner, Proc. R. Soc. A 468 (2012) 2829
-[146] A. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov, K. J. M. Bishop, B. A. Grzybowski, Science 312 (2006) 420
-[147] R. Klajn, K. J. M. Bishop, M. Fialkowski, M. Paszewski, C. J. Campbell, T. P. Gray, B. A. Grzybowski, Science 316 (2007) 261
-[148] R. Klajn, P. J. Wesson, K. J. M. Bishop, B. A. Grzybowski, Ange. Chem. Int. Edition 48 (38) (2009) 7035
-[149] H. Bönnemann, W. Brijoux. (1996). Chapter 9. Catalytically Active Metal Powders and Colloids. In: Active Metals: Preparation- Characterization Applications (Editor: A. Fürstner), Wiley-VCH, Weinheim.
-[150] J. Ruhe, M. Ballauff, M. Biesalski, P. Dziezok, F. Grohn, D. Johannsmann, N. Houbenov, N. Hugenberg, R. Konradi, S. Minko, M. Motornov, R. R. Netz, M. Schmidt, C. Seidel, M. Stamm, T. Stephan, D. Usov, H. N. Zhang, Polyelectrolyte Brushes. In: Polyelectrolytes with Defined Molecular Architecture I. M. Schmidt, (Ed.), Advances in Polymer Science 165 (2004) 79.
-[151] S. Creutz, R. Jerome, Langmuir 15 (1999) 7145
-[152] H. Mori, A. H. E. Muller, J. E. Klee, J. Amer. Chem. Soc. 125 (2003) 3712
-[153] H. Mori, M. G. Lanzendorfer, A. H. E. Muller, J. E. Klee, Langmuir 20 (2004) 1934
-[154] S. Forster, V. Abetz, A. H. E. Muller (2004). Polyelectrolyte Block Copolymer Micelles. In: Polyelectrolytes with Defined Molecular Architecture II, M. Schmidt, (Ed.), Advances in Polymer Science 166, 173
-[155] G. Sharma, M. Ballauff, Macromolecular Rapid Comm. 25 (2004) 547
-[156] Y. Mei, G. Sharma, Y. Lu, M. Ballauff, M. Drechsler, T. Irrgang, R. Kempe, Langmuir 21 (2005) 12229
-[157] Y. Mei, Y. Lu, F. Polzer, M. Ballauff, M. Drechsler, Chem. Mater. 19 (2007) 1062
-[158] S. Proch, Y. Mei, J. M. R. Villanueva, Y. Lu, A. Karpov, M. Ballauff, R. Kempe, Adv. Synthesis & Catalysis 350 (2008) 493
-[159] J. Kiwi, M. Grätzel, J. Amer. Chem. Soc. 101 (1997) 7214
-[160] H. Bönnemann, W. Brijoux, Euro. J. Inorg. Chem. 10 (2001) 2455
-[161] M. T. Reetz, W. Helbig, S. A. Quaiser, Chapter 7, Electrochemical Methods in the Synthesis of Nanostructured Transition Metal Clusters. In: Active Metals: Preparation Characterization Applications (Editor: A. Fürstner), VCH, Weinheim, (1996)
-[162] J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. Fichtner, S. R. Teixeira, J. Am. Chem. Soc. 124(16) (2002) 4228
-[163] K. S. Kim, D. Demberelnyamba, H. Lee, Langmuir 20 (2004) 556
-[164] S. Gao, H. Zhang, X. Wang, W. Mai, C. Peng, L. Ge, Nanotechnology 16 (2005) 1234
-[165] R. Marcilla, D. Mecerreyes, I. Odriozola, J. A. Pomposo, J. Rodriguez, I. Zalakain, I. Mondragon, Nano. 2 (2007) 169
-[166] N. Shalkevich, W. Escher, T. Burgi T, B. Michel, L. Si-Ahmed, D. Poulikakos, Langmuir 26 (2009) 663
-[167] Y. P. Zheng, J. X. Zhang, L. Lan, P. Y. Yu, R. Rodriguez, R. Herrera, D. Y. Wang, E. P. Giannelis, ChemPhysChem. 11 (2010) 61
-[168] B. Wang, M. Liu, Y. Wang, X. Chen, J. Phys. Chem. C 115 (23) (2011) 11374
-[169] H. Zhang, C. Hua, S. Yao, K. Zhang,H. Tao, H. Meng, Nanoscale Res. Lett. 7(1) (2012) 583
-[170] B. Zhang, N. Yan, Catalysts 3 (2013) 543
-[171] J. W. Sun, L. W. Wang, W. E. Buhro, J. Am. Chem. Soc 130 (2008) 7997
-[172] E. C. Scher, L. Manna L, A. P. Alivisatos, Philos. Trans. R. Soc. London, Ser. A 361 (2003) 241
-[173] S. Ithurria, B. Dubertret, J. Am. Chem. Soc 130 (2008) 16504
-[174] S. Pokrant, K. B. Whaley, Eur. Phys. J. D 6 (1999) 255
-[175] D. F. Underwood, T. Kippeny, S. J. Rosenthal, J. Phys. Chem. B 105 (2001) 436
-[176] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706
-[177] M. Ghali, K. Ohtani, Y. Ohno, H. Ohno, Nature Comm. 3, Article number: 661 (2012)
-[178] R. E. Acosta, A. Zapata, C.A. Duque, M. E. Mora-Ramos, Physica E: Low-dimensional Systems and Nanostructures. 44(9) (2012) 1936
-[179] A. P. Alivisatos, J. Phys. Chem. 100 (2996) 13226.
-[180] S. H. Tolbert, A. P. Alivisatos, Ann. Rev. Phys. Chem. 46 (1995) 595
-[181] M. A. Hines, P. Guyot-Sionnest, J. Phys. Chem 100 (1996) 468
-[182] J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, S. J. Rosenthal, Nano Lett. 6 (2006) 1496
-[183] R. E. Bailey, S. M. Nie, J. Am. Chem. Soc. 125 (2003) 7100
-[184] X. H. Zhong, Y. Y. Feng, W. Knoll, M. Y. Han, J. Am. Chem. Soc. 125 (2003) 13559
-[185] S. Kim, B. Fisher, H. J. Eisler, M. Bawendi, J. Am. Chem. Soc. 125 (2003) 11466
-[186] S. Kumar, M. Jones, S. S. Lo, G. D. Scholes, small 3 (2007) 1633
-[187] L. T. Canham, Appl. Phys. Lett. 57 (1990) 1046
-[188] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Appl. Phys. Lett. 56 (1990) 2379
-[189] H. Morizaki, F. W. Ping, H. Ono, K. Yazawa, J. Appl. Phys. 70 (1991) 1869
-[190] K. A. Littau, P. J. Szajowski, A. J. Muller, A. R. Kortan, L. E. Brus, J. Phys. Chem. 97 (1993) 1224
-[191] X.-N. Liu, X.-W. Wu, X.-M. Bao, Y.-L. He, Appl. Phys. Lett. 64 (1994) 220
-[192] P. D. Milewski, D. J. Lichtenwalner, P. Mehta, A. I. Kingon, D. Zhang, R. M. Kolbas, J. Electron Mater. 23 (1994) 57
-[193] S. Nozaki, S. Sato, H. Ono, H. Morisaki, Mater. Res. Soc. Symp. Proc. 351 (1994) 399
-[194] A. A. Seraphin, S.-T. Ngiam, K. D. Kolenbrander, J. Appl. Phys. 80 (1996) 6429
-[195] V. G. Baru, S. Bayliss, L. Zaharov, Yu. Microelectron, Eng. 36 (1997) 111
-[196] A. Frojtik, H. Weller, S. Fiechter, A. Henglein, Chem. Phys. Lett. 134 (1987) 477
-[197] S. Iijima, Jpn. J. Appl. Phys. 26 (1987) 357
-[198] S. Iijima, Jpn. J. Appl. Phys. 26 (1987) 365
-[199] M. F. Jarrold, Science 252 (1991) 1085
-[200] J. R. Heath, Science 258 (1992) 1131
-[201] J. L. Heinrich, C. L. Curtis, G. M. Credo, K. L. Kavamagh, M. J. Sailor, Science 255 (1992) 66
-[202] J. M. Hunter, J. L. Fye, M. F. Jarold, J. E. Bower, Phys. Rev. Lett. 73 (1994) 2063
-[203] R. A. Bley, S. M. Kauzlarich, J. Am. Chem. Soc. 118 (1996) 12461
-[204] R. A. Bley, S. M. Kauzlarich, H. W. H. Lee, Chem. Mater. 8 (1996) 1881
-[205] W. L. Wilson, P. F. Szajowski, L. E. Brus, Science 262 (1993) 1242
-[206] D. Zhang, R. M. Kolbas, J. M. Zavada, Appl. Phys. Lett. 65 (1994) 2684
-[207] L.-W. Wang, A. Zunger, J. Chem. Phys. 100 (1994) 2394
-[208] L.-W. Wang, A. Zunger, J. Phys. Chem. 98 (1994) 2158
-[209] M. Hirao, T. Uda, Surf. Sci. 306 (1994) 87
-[210] G. Onida, W. Andreoni, Chem. Phys. Lett. 243 (1995) 183
-[211] B. Delley, E. F. Steigmeier, Appl. Phys. Lett. 67 (1995) 2370
-[212] Y. Kanemitsu, S. Okamoto, M. Otobe, S. Oda, Phys. Rev. B 55 (1997) R7375
-[213] S. Oeguet, J .R. Chelikowsky, S. G. Louie, Phys. Rev. Lett. 79 (1997) 1770
-[214] G. Allan, C. Delerue, M. Lannoo, Phys. Rev. Lett. 78 (1997) 3161
-[215] A. B. Filonov, A. N. Kholod, F. d’Avitaya, X. Arnaud, Phys. Rev. B 57 (1998) 1394
-[216] M. O. Watanabe, T. Miyazaki, T. Kanayama, Phys. Rev. Lett. 81 (1998) 5362
-[217] T. van Buuren, L. N. Dinh, L. L. Chase, W. J. Siekhaus, L. J. Terminello, Phys. Rev. Lett. 80 (1998) 3803
-[218] A. Kux, M. B. Chorin, Phys. Rev. B 51 (1995) 17535
-[219] H. Yorikawa, H. Uchida, S. Muramatsu, J. Appl. Phys. 79 (1996) 3619
-[220] L. Brus, J. Phys. Chem. 90 (12) (1986) 2555
-[221] Y. Kayanuma, Solid State Comm. 59(6) (1986) 405
-[222] B. Delley, E. F. Steigmeier, Phys. Rev. B 47 (1993) 1397
-[223] D. Tomanek, M. A. Schlüter, Phys. Rev. B 36 (1987) 1208
-[224] J. R. Chelikowsky, Phys. Rev. Lett. 60 (1988) 2669
-[225] C. M. Rohlfing, K. Raghavachari, Chem. Phys. Lett. 167 (1990) 559
-[226] N. Binggeli, J. L. Martins, J. R. Chelikowsky, Phys. Rev. Lett. 68 (1992) 2956
-[227] M. Menon, K. R. Subbaswamy, Phys. Rev. B 47 (1993) 12754
-[228] E. C. Honea, A. Ogura, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold, W. L. Brown, Nature 366 (1993) 42
-[229] X. Jing, N. Troullier, Y. Saad, Phys. Rev. B 50 (1994) 12234
-[230] X. G. Gong, Phys. Rev. B 52 (1995) 14677
-[231] X. G. Gong, Q. Q. Zheng, Y.-Z. He, J. Phys. Condens. Matter 7 (1995) 577
-[232] C. Xu, T. R. Taylor, D. M. Neumark, J. Chem. Phys 108 (1998) 1395
-[233] H. Kimura, S. Imanaga, Y. Hayafuji, H. Adachi, J. Phys. Soc. Jpn. 62 (1993) 2663
-[234] B.-L. Gu, Z.-Q. Li, J.-L. Zhu, J. Phys.: Condens. Matter 5 (1993) 5255
-[235] T. van Buuren, T. Tiedje, J. R. Dahn, B. M. Way, Appl. Phys. Lett. 63 (1993) 2911
-[236] D. J. Wales, Phys. Rev. A 49 (1994) 2195
-[237] S. Fouad, Naseer Sabri, P. Poopalan, Z.A.Z. Jamal, Exp. Theo. NANOTECHNOLOGY 2 (2018) 115
-[238] S. Saito, Phys. Rev. B 51 (1995) 2628(R)
-[239] E. Kaxiras, In “Cluster Assembled Materials” (K. Sattler, Ed.), 232: 67. Trans. Tech. Publications, Zurich (1996)
-[240] S. Saito. In “Cluster Assembled Materials” (K. Sattler, Ed.), 232: 233. Trans. Tech. Publications, Zurich, (1996)
-[241] M. F. Jarrold, V. A. Constant, Phys. Rev. Lett. 67 (1991) 2994
-[242] K. Fuke, K. Tsukamoto, F. Misaizu, J. Chem. Phys. 99 (1993) 7807
-[243] P. Jackson, K.J. Fisher, G.E. Gadd, I. G. Dance, D. R. Smith, G. D. Willett, Int. J. Mass. Spectrom. Ion. Process. 164 (1997) 45
S. Hayashi, H. Abe, Jpn. J. Appl. Phys. 23 (1984) L824
-[245] J. A. Cogordan, L. E. Sansores, A. A. Valladares, J. Non-Cryst. Solids 181 (1995) 135
-[246] B. Marsen, M. Lonfat, P. Scheier, K. Sattler, J. Electron Spectroscopy and Related Phenomena 109 (2000) 157
-[247] J. P. Proot, C. Delerue, G. Allan, Appl. Phys. Lett. 61 (1992) 1948
-[248] P. E. Batson, J. R. Heath, Phys. Rev. Lett. 71 (1993) 911
-[249] Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, H. Mimura, Phys. Rev. B 48 (1993) 2827
-[250] C. Delerue, E. Martin, J.-F. Lampin, G. Allan, M. Lannoo, Le Journal de Physique IV(3) (1993) C5 -359
-[251] J. L. Gavartin, C. C. Matthai, Mater. Sci. Eng. B35 (1995) 459
-[252] A. Sieck, D. Porezag, T. Frauenheim, M. R. Pederson, K. Jackson, Phys. Rev. A 56 (1997) 4890
-[253] E. Kaxiras, Phys. Rev. B 56 (1997) 13455
-[254] P. Hapala, K. K˚usov´a, I. Pelant, P. Jel´ınek, Phys. Rev. B 87 (2013) 195420
-[255] R. S. Becker, J. A. Golovchenko, D. R. Hamann, B. S. Swartzentruber, Phys. Rev. Lett. 55 (1985) 2032
-[256] R. J. Hamers, P. Avouris, F. Bozso, Phys. Rev. Lett. 59 (1987) 2071
-[257] M. Maus, G. Ganteför, W. Eberhardt, App. Phys. A 70 (5)(2000) 535
-[258] O. Kostko, S. R. Leone, M. A. Duncan, M. Ahmed, J. Phys. Chem. A. 114(9) (2010) 3176
-[259] H. F. Wilson, L. McKenzie-Sell, A. S. Barnard, J. Mater. Chem. C 2 (2014) 9451
-[260] A. M. Smith, A. M. Mohs, S. Nie, Nature Nanotech. 4 (2009) 56
-[261] K. Akamatsu, S. Takei, M. Mizuhata, A. Kajinami, S. Deki, S. Takeoka, M. Fujii, S. Hayashi, K. Yamamoto, Thin Film Solids 359 (2000) 55
-[262] J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong, S.-T. Lee, W.-J. Zhang, C.-S. Lee, J. Mater. Chem. 22 (2012) 13374
-[263] J. Arbiol , M. de la Mata, M. Eickhoff, A. Fontcuberta i Morral, Materials today 16(6) (2013) 213
-[264] H. Wei, Y. Su, Z. Han, T. Li, X. Ren, Z. Yang, L. Wei, F. Cong Y. Zhang, Nanotechnology 24(23)(2013)
-[265] J. Shi, Y. Hara, C. L. Sun, M. A. Anderson, X. D. Wang, Nano Lett. 11 (2011) 3413
-[266] A. M. Smith, A. M. Mohs, and S. Nie, Nat Nanotechnol. 4(1) (2009) 56
-[267] J. Lee, H. Kim, S.-J. Kahng, G. Kim, Y.-W. Son, J. Ihm, H. Kato, Z. W. Wang, T. Okazaki, H. Shinohara,Y. Kuk, Nature (London) 415 (2002)- 1005
-[268] R. Rivelino, F. de Brito Mota, Nano letters 7 (6) (2007) 1526
-[269] S. Okubo, T. Okazaki, N. Kishi, S.-K. Joung, T. Nakanishi, S. Okada, S. Iijima, J. Phys. Chem. C 113 (2009) 571
-[270] G. L. Gibson, T. M. McCormick, D. S. Seferos, J. Amer. Chem. Soc. 134(1) (2011) 539
-[271] M. Wykes, B. Milián-Medina, J. Gierschner, Front Chem. 1 (2013) 35
-[272] T. Xu, L. Yu, Materials today 17(1) (2014) 11
-[273] S. Sarkar, S. Saha, S. Pal and P. Sarkar, RSC Adv. 4 (2014) 14673
-[274] H. Chen, J. Peet, S. Hu , J. Azoulay , G. Bazan , M. Dadmun, Adv. Funct. Mater. 24 (214) 140
-[275] M. Dvorak, W. Oswald, Z. Wu, Scientific Reports 3, Art. No. 2289 (2013)
-[276] R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, L. Hornekær, Nature Materials 9 (2010) 315
-[277] M. Y. Han, B. Oezyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98(20) (2007)
-[278] C. Jeon, H.-C. Shin, I. Song, M. Kim, J.-H. Park, J. Nam, D.-H. Oh, S. Woo, C.-C. Hwang, C.-Y. Park, J. R. Ahn, Scientific Reports 3, Article number: 2725 (2013)
-[279] N. Kharche, S. K. Nayak, Nano Lett. 11 (12) (2011) 5274
-[280] W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, F. Braet, Ang. Chemie. Int. Edition 49(12) (2010) 2114
-[281] H. W. Ch. Postma, Nano Lett., 10 (2) (2010) 420
-[282] F. Menaa, J. Mol. Imaging Dynam 3:e103(2013)
-[283] M. Yang, X. Zhang, Environ. Sci. Technol. 48 (20) (2014) 11846
-[284] S. Upadhyay, U. J. Phukan, S. Mishra, R. K. Shukla, BMC Genomics 15 (2014) 746
-[285] Y.-Q. Li, M.-F. Zhang, H.-Y. Wen, C.-L. Hu, R. Liu, H.-Y. Wei, C.-M. Ai, G. Wang, X.-X. Liao, X. Li, Clinics (Sao Paulo). 68(1) (2013) 75
-[286] T. A. Mattei, A. A. Rehman, Neurosurgery 74 (5) (2014) 499
-[287] S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. -Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, P. Hofmann, Phys. Rev. Lett. 112 (2014) 257401
-[288] S. Kannappan, K. Kaliyappan, R. K. Manian, A. S. Pandian, H. Yang, Y. S. Lee, J.-H. Jang, W. Lu, eprint arXiv:1311.1548 (2013).
-[289] H. Tian, Y. Shu, Y.-L. Cui, W.-T. Mi, Y. Yang, D. Xie, T.-L. Ren, Nanoscale, 6 (2014) 699
-[290] G. Eda, G. Fanchini, M. Chhowalla, Nature Nanotechnology 3(2008) 270
-[291] Y.-P. Hsieh, M. Hofmann, J. Kong, J. Carbon 67 (2013) 417
-[292] H. Brody, Nature 483 (2012) S29
-[293] Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, Q. J. Wang, Nature Communications 4, Article number: 1811 (2013)
-[294] Lockheed Martin (2013), Text available @ www.businessinsider. in/Lockheed-Martin-Says-This-Desalination-Technology-Is-An-Industry-Game-Changer/ articleshow/21232574.cms
-[295] R. Sanna, E. Fortunati, V. Alzari, D. Nuvoli, A. Terenzi, M. F. Casula, J. M. Kenny, A. Mariani, Cellulose 20 (2013) 2393
-[296] S. Pan, Z. Yang, P. Chen, J. Deng , H. Li , H. Peng, Angew. Chem. Int. Ed. Engl. 53 (24) (2014) 6110
-[297] N. Nuraje, S. I. Khan, H. Misak, R. Asmatulu. ISRN Polymer Science
(2013), Article ID 514617.
-[298] E. Anslyn (2004), Modern Physical Organic Chemistry, Sausalito, CA: University Science. ISBN 978-1-891389-31-3.
-[299] A. W.-C. Lau (2000), Fluctuation and Correlation Effects in Electrostatics of Highly Charged Surfaces. PhD thesis submitted to Physics Department, University of California, Santa Barbara
-[300] Nanowerk, 2010; text available @ http://www.nanowerk.com/spotlight/ spotid=16047.php