Si-doped polycrystalline via chemical deposition
DOI:
https://doi.org/10.56053/3.3.253Keywords:
CVD, AlN, PLAbstract
Microcrystalline diamond films doped with silicon have been grown on aluminum nitride substrates by a microwave plasma CVD. The doping has been performed via adding silane in various concentrations to CH4–H2 reaction gas mixture in course of the deposition process. The films produced at the substrate temperatures of 750 to 950°C have been characterized by SEM, AFM, Raman and photoluminescence (PL) spectroscopy to assess the effect of Si doping on the diamond structure. The doped films showed bright photoluminescence of silicon-vacancy (SiV) color centers at 738 nm wavelength as well as noticeable side band at 723 nm. The optimum doping condition (SiH4/CH4 = 0.6%), that maximize the SiV PL emission, was determined for the range of silane concentrations SiH4/CH4 (0.0 – 0.9%) explored. A further PL enhancement can be achieved by increase in the substrate temperature. The applied in situ doping from gas phase is shown to be an easy and effective method to incorporate Si in diamond in a controllable way.
References
-[1] H. Ibrahim, M. Abdel-Rahman, Emad A. Badawi, M. A. Abdel-Rahman, Exp. Theo. NANOTECHNOLOGY 2 (2018) 83
-[2] Uhlmann E, Sammler F. Adv Mater Res 907 (2014) 63
-[3] Silva FJG, Fernandes AJS, Costa FM, Teixeira V, Baptista APM, Pereira E. Wear 255 (2003) 846
-[4] Yang N, Ed. Novel Aspects of Diamond: From Growth to Applications. Berlin: Springer; (2015)
-[5] Szunerits S, Nebel CE, Hamers RJ. MRS Bulletin 39 (2014) 517
-[6] Aharonovich I, Neu E. Diamond nanophotonics. Adv Opt Mater 2 (2014) 911
-[7] Prawer S, Aharonovich I. Quantum information processing with diamond: principles and applications. Elsevier; (2014)
-[8] Neu E, Arend C, Gross E, et al. Appl Phys Lett 98 (2011) 243107
-[9] Hui YY, Cheng C-L, Chang H-C. J Phys D: Appl Phys 43 (2010) 374021
-[10] Wang L, Lei X, Shen B, Sun F, Zhang Z. Diam Relat Mater 33 (2013) 54
-[11] Musale DV, Sainkar SR, Kshirsagar ST. Raman, Diam Relat Mater 11 (2002) 75
-[12] Grudinkin SA, Feoktistov NA, Medvedev AV, et al. J Phys D: Appl Phys 45 (2012) 062001
-[13] Cui Y, Zhang J, Sun F, Zhang Z. Trans Nonferrous Met Soc China 23 (2013) 2962
-[14] Sedov VS, Ralchenko VG, Vlasov II, et al. Bull Lebedev Phys Inst 41 (2015) 359
-[15] Smolin AA, Ralchenko VG, Pimenov SM, Kononenko TV, Loubnin EN. Appl Phys Lett 62 (1993) 3449
-[16] Vlasov II, Goovaerts E, Ralchenko VG, Konov VI, Khomich AV, Kanzyuba MV. Diam Relat Mater 16 (2007) 2074
-[17] Yim WM, Paff RJ. J Appl Phys 45 (1974) 1456
-[18] Ager JW. Residual Stress in Diamond and Amorphous Carbon Films. Symposium I - Mechanical Behavior of Diamond and Other Forms of Carbon. 1995.
-[19] Bolshakov A, Ralchenko V, Sedov V, et al. Phys Status Solidi A 488 (2015) 57
-[20] Sternschulte H, Thonke K, Sauer R, Münzinger PC, Michler P. Phys Rev B 50 (1994) 14554
-[21] Sedov V, Ralchenko V, Khomich AA, Diam Relat Mater. 56 (2015) 23
-[22] Burns RC, Cvetkovic V, Dodge CN, J Cryst Growth. 104 (1990) 257
-[23] Rogers LJ, Jahnke KD, Doherty MW, Phys Rev B. 89 (2014) 235101
-[24] Turukhin AV, Liu C-H, Gorokhovsky AA, Alfano RR, Phillips W. Phys Rev B. 54 (1996) 16448
-[25] Davydov VA, Rakhmanina AV, Lyapin SG, Jetp Lett. 99 (2014) 585
-[26] Fabisiak K, Baa W, Paprocki K, Szreiber M, Uniszkiewicz C. Opt Mater. 31 (2009) 1873
-[27] Smith BR, Gruber D, Plakhotnik T. Diam Relat Mater. 19 (2010) 314
-[28] Singh S, Thomas V, Martyshkin D, Kozlovskaya V, Kharlampieva E, Catledge SA. Nanotechnology 25 (2014) 045302
-[29] Sovyk D, Ralchenko V, Komlenok M, Appl Phys A. 118 (2014) 17