Optical and structural properties of zinc oxide nanocrystalline

Authors

  • C. Tedlle Department of Electrical Engineering and Computer Science, South Dakota State University, Brooking, SD 57007, USA Author
  • N. Chen Department of Electrical Engineering and Computer Science, South Dakota State University, Brooking, SD 57007, USA Author
  • I. Pero Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal Author

DOI:

https://doi.org/10.56053/3.2.235

Keywords:

ZnO, Sol-gel, oxygen plasma, crystal size

Abstract

Zinc oxide (ZnO) is a wide band gap (~3.37 eV) semiconductor. Thin film ZnO has many attractive applications in optoelectronics and sensors. Recently, nanostructured ZnO (e.g. ZnO quantum dot) has been demonstrated as a hyperbolic material; its dielectric function has opposite signs along different crystal axes within the mid-infrared, making it an interesting material for metamaterials and nanophotonics. Conventional sputtering deposition usually leads to the formation of polycrystalline ZnO films with randomly oriented grains and rough surface. This work demonstrated a solution-based process to grow ZnO thin films with highly oriented nanocrystals. Low-temperature plasmas were employed to modulate the microstructure and optical properties of the films. Such highly anisotropic nanostructured transparent semiconductor films may lead to interesting material properties in developing new optoelectronic devices.

References

-[1] Yasser A. Abdel-Hadi, Exp. Theo. NANOTECHNOLOGY 2 (2018) 59

-[2] Meena JS, Chu M-C, Chang Y-C, J Mater Chem C 1 (2013) 6613

-[3] Li H, Wang J, Liu H, Vacuum 77 (2004) 57

-[4] Zhou Z, Kato K, Komaki T, J Eur Ceram Soc 24 (2004) 139

-[5] Wang D, Zhao D, Wang F, Yao B, Shen D. Physica Status Solidi A 212 (2015) 846

-[6] Van de Walle CG. Phys Rev Lett 85 (2000) 1012

-[7] Kumar NS, Bangera KV, Shivakumar G. Appl Nanosci 4 (2014) 209

-[8] Ozgur U, Hofstetter D, Morkoc H. Proc IEEE 98 (2010) 1255

-[9] Znaidi L. Mater Sci Eng B 174 (2010) 18

-[10] Fonoberov VA, Balandin AA. J Phys Condens Matter 17 (2005) 1085

-[11] Hsu C-W, Cheng T-C, Yang C-H, Shen Y-L, Wu J-S, Wu S-Y. J Alloys Comp. 509 (2011) 1774

-[12] Kuo F-L, Li Y, Solomon M, Du J, Shepherd ND. J Phys D Appl Phys 45 (2012) 065301

-[13] Znaidi L. Materi Sci Eng B 174 (2010) 18

-[14] Elilarassi R, Chandrasekaran G. Mater Chem Phys 121 (2010) 378

-[15] Ng Z-N, Chan K-Y, Sin Y-K, Hoon J-W, Ng S-S. Ceram Int 39 (2013) S263

-[16] Sengupta J, Sahoo R, Mukherjee C. Mater Lett 83 (2012) 84

-[17] Ng Z-N, Chan K-Y, Tohsophon T. Appl Surf Sci 258 (2012) 9604

-[18] Zak AK, Abrishami ME, Majid WA, Yousefi R, Hosseini S. Ceram Int 37 (2011) 393

-[19] Sengupta J, Sahoo R, Bardhan K, Mukherjee C. Mater Lett 65 (2011) 2572

-[20] M. Mourad Mabrook, Exp. Theo. NANOTECHNOLOGY 2 (2018) 103

-[21] Chen X, Zhou J, Wang H, Xu P, Pan G. Chinese Phys B 20 (2011) 096102

-[22] Caglar Y, Ilican S, Caglar M, J Alloys Comp. 481 (2009) 885

Downloads

Published

2019-04-15

Issue

Section

Articles

How to Cite

Optical and structural properties of zinc oxide nanocrystalline . (2019). Experimental and Theoretical NANOTECHNOLOGY, 3(2), 235-244. https://doi.org/10.56053/3.2.235