ZnO nanowire arrays for UV photodetector
DOI:
https://doi.org/10.56053/3.1.95Keywords:
ZnO, Array, UVAbstract
Well-crystallized ZnO nanowire arrays were grown on GaN/sapphire by one-step chemical vapor deposition under control of the fabrication pressure of 1000– 2500 Pa and the best-aligned arrays were obtained at 1000 Pa. A photoluminescence study shows a red shift with nanowire diameter increase. Under 365-nm UV irradiation of 0.3 mW/cm2, the photoresponse study of the best ZnO ar- rays shows an ultra-fast tri-exponential rise with three constants of 0.148, 0.064 and 0.613 s, and a bi-exponential de- cay behavior with two recovery constants of 30 and 270 ms. The ZnO/GaN heterojunction barriers could be responsible for the ultra-fast tri-exponential rise and bi-exponential de- cay behavior.
References
-[1] X.H. Zhang, L. Gong, K. Liu, Y.Z. Cao, X. Xiao, W.M. Sun, X.J. Hu, Y.H. Gao, J.A. Chen, J. Zhou, Z.L. Wang, Adv. Mater. 22 (2010) 5292
-[2] Y.H. Gao, Y. Bando, Nature 415, (2002) 599
-[3] X.F. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421 (2003) 241
-[4] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292 (2001) 1897
-[5] S. Jha, J.C. Qian, O. Kutsay, J. Kovac, C.Y. Luan, J.A. Za- pien, W.J. Zhang, S.T. Lee, I. Bello, Nanotechnology 22 (2011) 245202
-[6] A.B. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, Nano Lett. 7 (2007) 2183
-[7] C.S. Lao, J. Liu, P.X. Gao, L.Y. Zhang, D. Davidovic, R. Tum- mala, Z.L. Wang, Nano Lett. 6 (2006) 263
-[8] G.D. Yuan, W.J. Zhang, J.S. Jie, X. Fan, J.X. Tang, I. Shafiq, Z.Z. Ye, C.S. Lee, S.T. Lee, Adv. Mater. 20 (2008) 168
-[9] G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, Appl. Phys. Lett. 99 (2011) 203105
-[10] J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, Z. Ren, Nanoscale Res. Lett. 6 (2011) 404
-[11] J. Zhou, Y.D. Gu, Y.F. Hu, W.J. Mai, P.H. Yeh, G. Bao, A.K. Sood, D.L. Polla, Z.L. Wang, Appl. Phys. Lett. 94 (2009) 191103
-[12] K. Kwak, K. Cho, S. Kim, Nanotechnology 22 (2011) 415204
-[13] B.O. Jung, D.C. Kim, B.H. Kong, D.W. Kim, H.K. Cho, Sens. Actuators B, Chem. 160 (2011) 740
-[14] M. Mourad Mabrook, Exp. Theo. NANOTECHNOLOGY 2 (2018) 103
-[15] S. Bai, W. Wu, Y. Qin, N. Cui, D.J. Bayerl, X. Wang, Adv. Funct. Mater. 21 (2011) 4464
-[16] Y. Li, F. Della Valle, M. Simonnet, I. Yamada, J.J. Delaunay, Appl. Phys. Lett. 94 (2009) 023110
-[17] A. Bera, D. Basak, Appl. Phys. Lett. 94 (2009) 163119
-[18] Y. Wang, Z. Liao, G. She, L. Mu, D. Chen, W. Shi, Appl. Phys. Lett. 98 (2011) 203108
-[19] R.F. Zhuo, H.T. Feng, J.T. Chen, D. Yan, J.J. Feng, H.J. Li, B.S. Geng, S. Cheng, X.Y. Xu, P.X. Yan, J. Phys. Chem. C 112 (2008) 11767
-[20] X.D. Wang, J.H. Song, C.J. Summers, J.H. Ryou, P. Li, R.D. Dupuis, Z.L. Wang, J. Phys. Chem. B 110 (2006) 7720
-[21] H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20 (2010) 561
-[22] R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Phys. Rev. B 75 (2007) 165202
-[23] S. Dhara, P. Giri, Nanoscale Res. Lett. 6 (2011) 504
-[24] S. Mridha, D. Basak, Appl. Phys. Lett. 92 (2008) 142111