Synthesis and characterization of ZnO nanoflowers under temperature effect

Authors

  • W. Smith Micro Materials Ltd, Ellice Way, Wrexham LL13 7YL, UK Author
  • A. Becker Department of Materials Science, Universidad Politécnica de Madrid, 28040 Madrid, Spain Author
  • L. Harison Micro Materials Ltd, Ellice Way, Wrexham LL13 7YL, UK Author

DOI:

https://doi.org/10.56053/4.3.70

Keywords:

Synthesis, Characterization, ZnO

Abstract

Synthesis of flower-shaped ZnO nanostructures composed of hexagonal ZnO nanorods was achieved by the solution process using zinc acetate dihydrate and sodium hydroxide at very low temperature of 90 8C in 30 min. The individual nanorods are of hexagonal shape with sharp tip, and base diameter of about 300–350 nm. Detailed structural characterizations demonstrate that the synthesized products are single crystalline with the wurtzite hexagonal phase, grown along the [0 0 0 1] direction. The IR spectrum shows the standard peak of zinc oxide at 523 cm-1. Raman scattering exhibits a sharp and strong E2 mode at 437 cm-1 which further confirms the good crystallinity and wurtzite hexagonal phase of the grown nanostructures. The photoelectron spectroscopic measurement shows the presence of Zn, O, C, zinc acetate and Na. The binding energy ca. 1021.2 eV (Zn 2p3/2) and 1044.3 eV (Zn 2p1/2), are found very close to the standard bulk ZnO binding energy values. The O 1s peak is found centered at 531.4 eV with a shoulder at 529.8 eV. Room-temperature photoluminescence (PL) demonstrate a strong and dominated peak at 381 nm with a suppressed and broad green emission at 515 nm, suggests that the flower-shaped ZnO nanostructures have good optical properties with very less structural defects.

References

-[1] Arafa H. Aly, Ahmed Mehaney, Shrouk Eid, Exp. Theo. NANOTECHNOLOGY 3 (2019) 19

-[2] W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Mater. 16 (2004) 1009

-[3] W.J.E. Beek, M.M. Wienk, M.K. Emerink, X. Yang, R.A.J. Janssen, J. Phys. Chem. B 109 (2005) 9505

-[4] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mare, B. Gates, Y. Yin, F. Kim, H.Yan, Adv. Mater. 15 (2003) 323

-[5] Z.L. Wang, Mater. Today 7 (2004) 26

-[6] P. Zu, Z.K. Tang, G.K. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103 (1997) 459

-[7] D.M. Bangall, Y.G. Chen, Z. Zhu, T. Yao, Appl. Phys. Lett. 70 (1997) 2230

-[8] Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78 (2001) 407

-[9] Y. Li, G.W. Meng, L.D. Zhang, F. Philip, Appl. Phys. Lett. 76 (2000) 2011

-[10] K. Omichi, K. Kaiya, N. Takahashi, T. Nakamura, S. Okamoto, H. Yamamoto, J. Mater. Chem. 11 (2001) 262

-[11] H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13 (2001) 113

-[12] Y. Wang, M. Li, Mater. Lett. 60 (2006) 266

-[13] A. Umar, S. Lee, Y.S. Lee, K.S. Nahm, Y.B. Hahn, J. Cryst. Growth 277 (2005) 479

-[14] C.L. Wu, Li Chang, H.G. Chen, C.W. Lin, T.F. Chang, Y.C. Chao, J.K. Yan, Thin Solid Films 498 (2006) 137

-[15] J.Y. Park, H. Oh, J.-J. Kim, S.S. Kim, J. Cryst. Growth 287 (2006) 145

-[16] J. Zhang, et al. Chem. Mater. 12 (2002) 4172

-[17] X. Gao, X. Li, W. Yu, J. Solid State Chem. 178 (2005) 1139

-[18] M. Umetsu, M. Mizuta, K. Tsumoto, S. Ohra, S. Takami, H. Watanabe, I. Kumagaiand, T. Adschiri, Adv. Mater. 17 (2005) 2571

-[19] J.F. Hochepied, A.P.A. Oliveira, V.G. Ferrol, J.F. Tranchant, J. Cryst. Growth 282 (2005) 156a

-[20] H. Zhang, D. Yang, D. Li, X. Ma, S. Li, D. Que, Cryst. Growth Des. 5 (2005) 547

-[21] W. Lili, W. Youshi, S. Yuanchang, W. Huiying, Rare Metals 25 (2006) 68

-[22] Y.H. Ni, X.W. Wei, J.M. Hong, Y. Ye, Mater. Sci. Eng. B 121 (2005) 42

-[23] B. Vincent Crist, Handbook of Monochromatic XPS Spectra: The Elements and Native Oxides, John Wiley & Sons, England, 2000, p. 510

-[24] http://srdata.nist.gov/xps/bind_e_detail_indv.asp?ID1=22608

-[25] P.X. Gao, Z.L. Wang, J. Phys. Chem. B 108 (2004) 7534

-[26] R.A. Laudise, A.A. Ballman, J. Phys. Chem. 64 (1960) 688

-[27] W.J. Li, E.W. Shi, M.Y. Tian, B.G. Wang, W.Z. Zhong, Sci. China E 28 (1998) 212

-[28] T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142 (1966) 142

-[29] Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Y. Song, S.L. Zhang, D.P. Yu, Appl. Phys. Lett. 83 (2003) 1689

-[30] M. Rajalakshmi, A.K. Arora, B.S. Bendre, S. Mahamuni, J. Appl. Phys. 87 (2000) 2445

-[31] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, J. Appl. Phys. 79 (1996) 7983

-[32] D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 73 (1998) 1038

Downloads

Published

2020-07-15

Issue

Section

Articles

How to Cite

Synthesis and characterization of ZnO nanoflowers under temperature effect. (2020). Experimental and Theoretical NANOTECHNOLOGY, 4(3), 59-70. https://doi.org/10.56053/4.3.70