Solar energy harvesting efficiency of nano-antennas
DOI:
https://doi.org/10.56053/4.3.59Keywords:
Harvesting, Energy, Solar, Nano-antennaAbstract
The radiation efficiency of nano-antennas is a key parameter in the emerging field of IR and optical energy harvesting. This parameter is the first factor in the total efficiency product by which nano-antennas are able to convert incident light into useful energy. This efficiency is investigated in terms of the metal used as conductor and the dimensions of the nano-antenna. The results set upper bounds for any possible process transforming light into electrical energy. These upper bounds are the equivalent of the theoretical upper bounds for the efficiency of conventional solar cells. Silver shows the highest efficiencies, both in free space and on top of a glass (SiO2) substrate, with radiation efficiencies near or slightly above 90%, and a total solar power harvesting efficiency of about 60–70%. This is considerably higher than conventional solar cells. It is found that fine-tuning of the dipole dimensions is crucial to optimize the efficiency. & 2012 Elsevier Ltd. All rights reserved.
References
-[1] D.K. Kotter, S.D. Novak, W.D. Slafer, P. Pinhero, Solar nantenna electromagnetic collectors, in: 2nd International Conference on Energy Sustainability, August 2008, Jacksonville, Florida, USA, pp. 10
-[2] M. Namdar, Sh. Kh. Asl, Exp. Theo. NANOTECHNOLOGY 3 (2019) 9
-[3] H. Gao, K. Li, F. Kong, H. Xie, J. Zhao, Progress in Electromagnetics Research 104 (2010) 313
-[4] J.-S. Huang, T. Feichtner, P. Biagioni, B. Hecht, Nano Letters 9 (5) (2009) 1897
-[5] M.W. Knight, H. Sobhani, P. Norlander, N.J. Halas, Science 332 (2011) 354
-[6] S. Lal, S. Link, N.J. Halas, Nature Photonics 1 (2007) 641
-[7] P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308 (5728) (2005) 1607
-[8] G.A.E. Vandenbosch, V. Volski, N. Verellen, V.V. Moshchalkov, Radio Science 46 (2011) 547
-[9] T. Ishi, J. Fujikata, K. Makita, T. Baba, K. Ohashi, Japanese Journal of Applied Physics 44 (12–15) (2005) 364
-[10] A. Alu, N. Engheta, Physical Review Letters 101 (2008) 043901
-[11] A. Alu' 1, N. Engheta, Physical Review B 78 (2008) 195111
-[12] F.J. Gonzalez, et al., Journal of Infrared Physics and Technology 52 (2009) 48
-[13] J. Li, A. Salandrino, N. Engheta, Physical Review B 79 (2009) 195104
-[14] T. Kosako, Y. Kadoya, H.F. Hofmann, Nature Photonics 4 (2010) 312
-[15] D. Gevaux, Nature Photonics 1 (2007) 90
-[16] J. Alda, J. Rico-Garcia, J.M. Lopez-Alonso, G. Boreman, Nanotechnology 16 (2005) S230
-[17] B. Tian, C.M. Lieber, Pure and Applied Chemistry 83 (2011) 2153
-[18] Y. Dong, B. Tian, T. Kempa, C.M. Lieber, Nano Letters 9 (2009) 2183
-[19] B. Tian, T.J. Kempa, C.M. Lieber, Chemical Society Reviews 38 (2009) 16
-[20] R. Yu, Q. Lin, S.-F. Leung, Z. Fan, Nano Energy 1 (1) (2012) 57
-[21] M. Vrancken, G.A.E. Vandenbosch, IEEE Transactions on Antennas and Propagation 51 (10) (2003) 2778
-[22] Y. Schols, G.A.E. Vandenbosch, IEEE Transactions on Antennas and Propagation 55 (4) (2007) 1086
-[23] A. Vasylchenko, Y. Schols, W. De Raedt, G.A.E. Vandenbosch, IEEE Antennas and Propagation Magazine 51 (2009) 23
-[24] K. -O. Ong, J. Cheong, -F. Heong, Exp. Theo. NANOTECHNOLOGY 4 (2020) 11
-[25] F. Pelayo, G. De Arquer, V. Volski, N. Verellen, G.A.E. Vandenbosch, V.V. Moshchalkov, IEEE Transactions on Antennas and Propagation 59 (2011) 987