TiO2 nanorods with CdS quantum dots for optical applications

Authors

  • W. Jei School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China Author
  • J. Lim School of Information Science and Engineering, Shandong University, Jinan 250100, PR China Author
  • H. Hoa Department of Physics, Portland State University, Post Office Box 751, Portland, OR 97207-0751, United States Author

DOI:

https://doi.org/10.56053/4.3.47

Keywords:

II-VI, QDs, Optical

Abstract


We combine CdS semiconductor quantum dots and single-crystalline rutile TiO2 nanorod arrays to produce a practical quantum dot sensitized solar cell. A facile wet-chemical approach was implemented for growth of this CdS@TiO2 architecture. Rutile TiO2 nanorod arrays with lengths of 1–2 mm and diameters of 40–60 nm was synthesized on fluorine-doped tin oxide glass by a hydrothermal process in a titanium tetrachloride precursor solution. CdS quantum dots with a size of 5–10 nm was deposited onto a TiO2 nanorod surface using an ultrasonic-assisted chemical bath deposition method. The resulting CdS quantum dots and TiO2 nanorods formed a type-II heterojunction and showed increased absorption over visible light range. Incident photon-to-current conversion efficiencies (IPCE) as high as 85% and power conversion efficiencies of 2.54% were obtained using a polysulfide electrolyte.

References

-[1] Ali H. AL-Hamdani, Mohammed A.R. Hussein, Aya H. Makki, Exp. Theo. NANOTECHNOLOGY 3 (2019) 1

-[2] M. Gratzel, Nature 414 (2001) 338

-[3] M.J. Currrie, J.K. Mapel, T.D. Heidel, S. Goffri, M.A. Baldo, Science 321 (2008) 226

-[4] B. Eva, C.K. Frederik, Solar Energy Materials and Solar Cells 91 (2007) 954

-[5] G. Serap, N. Helmut, S.S. Niyazi, Chemical Reviews 107 (2007) 1324

-[6] Y.J. Cheng, S.H. Yang, C.S. Hsu, Chemical Reviews 109 (2009) 5868

-[7] R.R. King, Nature Photonics 2 (2008) 284

-[8] W. Guter, J. Schone, S.P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A.W. Bett, F. Dimroth, Applied Physics Letters 94 -(2009) 223504

-[9] J. Geisz, S. Kurtz, M.W. Wanlass, J.S. Ward, A. Duda, D.J. Friedman, J.M. Olson, W.E. McMahon, T.E. Moriarty,J.T. Kiehl, Applied Physics Letters 91 (2007) 023502

-[10] B. Liu, E.S. Aydil, Journal of the American Chemical Society 131 (2009) 3985

-[11] K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Nano Letters 7 (2007) 1793

-[12] L.M. Peter, D.J. Riley, E.J. Tull, K.G.U. Wijayantha, Chemical Communications 10 (2002) 1030

-[13] A.J. Nozik, Chemical Physics Letters 457 (2008) 3

-[14] A. Luque, A. Marti, A.J. Nozik, MRS Bulletin 32 (2007) 236

-[15] P.V. Kamat, Journal of Physical Chemistry C 112 (2008) 18737

-[16] D.R. Baker, P.V. Kamat, Advanced Functional Materials 19 (2009) 805

-[17] S.K. Haram, B.M. Quinn, A.J. Bard, Journal of the American Chemical Society 123 (2001) 8860

-[18] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Letters 6 (2006) 21

-[19] K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Nano Letters 7 (2007) 69

-[20] H. Wang, Y.S. Bai, H.Z.H. Zhang, Zhang, J.H. Li, L. Guo, Journal of Physical Chemistry C 114 (2010) 16451

-[21] J.J. Wu, C.C. Yu, Journal of Physical Chemistry B 108 (2004) 3377

-[22] C. Weng, K.F. Hsu, K.H. Wei, Chemistry of Materials 16 (2004) 4080

-[23] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, Journal of the American Chemical Society 130 (2008) 4007

-[24] I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Journal of the American Chemical Society 128 (2006) 2385

-[25] V. Gonza'lez-Pedro, X. Xu, I. Mora-Sero´, J. Bisquert, ACS Nano 4 (2010) 5783

-[26] T. Toyoda, K. Oshikane, D. Li, Y. Luo, Q. Meng, Q. Shen, Journal of Applied Physics 108 (2010) 114340

-[27] T. Sugimoto, X. Zhou, A. Muramatsu, Journal of Colloid and Interface Science 259 (2003) 43

-[28] C. Lee, Y.M. Sung, T.G. Kim, H. Choi, Applied Physics Letters 91 (2007) 113104

-[29] J.L. Blackburn, D.C. Selmarten, A.J. Nozik, Journal of Physical Chemistry B 107 (2003) 14154

-[30] Y. Wada, H. Kuramoto, J. Anand, T. Kitamura, T. Sakata, H. Mori, S. Yanagida, Journal of Materials Chemistry 11 (2001) 1936

-[31] P.H. Mugdur, Y.J. Chang, S.Y. Han, Y.W. Su, A.A. Morrone, S.O. Ryu, T.J. Lee, C.H. Chang, Journal of the Electrochemical Society 154 (2007) 482

-[32] Y.J. Shen, Y.L. Lee, Nanotechnology 19 (2008) 045602

-[33] H. Chang, Y.L. Lee, Applied Physics Letters 91 (2007) 053503

-[34] S. Hachiya, Y. Onishi, Q. Shen, T. Toyoda, Journal of Applied Physics 110 (2011) 054319

-[35] Y.L. Lee, C.H. Chang, Journal of Power Sources 185 (2008) 584

-[36] C. Lee, T.G. Kim, W. Lee, S.H. Han, Y.M. Sung, Crystal Growth and Design 9 (2009) 4519

-[37] W. Shockley, H.J. Queisser, Journal of Applied Physics 32 (1961) 510

Downloads

Published

2020-07-15

Issue

Section

Articles

How to Cite

TiO2 nanorods with CdS quantum dots for optical applications. (2020). Experimental and Theoretical NANOTECHNOLOGY, 4(3), 47-58. https://doi.org/10.56053/4.3.47