Optical properties of TiO2 Nanofibers

Authors

  • K. -O. Ong Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore Author
  • J. Cheong Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore Author
  • F. Heong Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore Author

DOI:

https://doi.org/10.56053/4.1.1

Keywords:

Optical, Metal oxide, Nanofiber

Abstract

The anatase TiO2 nanofibers of average diameters 60, 100, and 150 nm were fabricated by controlled electrospinning of a polymeric solution and subsequent sintering of the as-spun fibers. The sintered fibers were polycrystalline and composed of densely packed TiO2 grains of size ∼12 nm. The rutile phase nucleated at the particle interface of the dense anatase TiO2 nanofibers at a temperature of <570 °C because of the increased surface stress observed in these nanofibers. X-ray and electron diffraction measurements and analysis of the sintered fibers showed that the lattice strain increased with a decrease in the fiber diameter. The diameter-dependent lattice strain is attributed to the increased surface energy in fibers of lower diameter. The strain most likely originates from interplay of the surface charge and grain boundary effects. The absorption spectra of the fibers showed a red shift with an increase in the fiber diameter, which is attributed to an increase in the surface stress with a decrease in the fiber diameter.

References

-[1] F. M. Shamsudin, S. Radiman, Y. Abdullah, N. A. Hamid, Exp. Theo. NANOTECHNOLOGY 3 (2019) 27

-[2] Fujishima, A.; Honda, K. Nature 238 (1972) 37

-[3] O’Regan, B.; Gratzel, M. Nature 353 (1991) 737

-[4] M. Devi, Manas R. Panigrahi, Exp. Theo. NANOTECHNOLOGY 2 (2017) 69

- [5] Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R. J. Phys. Chem. 92 (1988) 5196

-[6] Anpo, M.; Shima, T.; Kodama, S.; Kubokawa, Y. J. Phys. Chem. 91 (1987) 4305

-[7] Joselevich, E.; Willner, I. J. Phys. Chem. 98 (1994) 7628

-[8] Lieber, C. M. Solid State Commun. 98 (1998) 607

-[9] Peng, X.; M., L.; Yang, W.; Wickham, J.; Scher, E.; K., A.; Alivisatos, A. P. Nature 404 (2000) 59

-[10] Gilbert, B.; H., F.; Zhang, H.; Waychunas, G. A.; Banfield, J. F. Science 305 (2004) 651

-[11] Mikami, M.; Nakamura, S.; Kitao, O.; Arakawa, H.; Gonze, X. Jpn. J. Appl. Phys. 39 (2000) L847

-[12] Kokubo, H.; Ding, B.; Naka, T.; Tsuchihira, H.; Shiratori, S. Nanotechnology 18 (2007) 1

-[13] Bisma Bilal, Suhaib Ahmed, Vipan Kakkar, Exp. Theo. NANOTECHNOLOGY 3 (2019) 33

-[14] Limmer, S. J.; Guozhong, C. AdV. Mater. 15 (2003) 427

-[15] Miao, Z. Xu, D.; Ouyang, J.; Guo, G.; Zhao, X.; Tang, Y. Nano Lett. 2 (2002) 717

-[16] G. Samla, K. B. Gan, S. M. Then, Exp. Theo. NANOTECHNOLOGY 2 (2017) 81

-[17] Jun, Y. W.; Casula, M. F.; Sim, J.-H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P. J. Am. Chem. Soc. 125 (2003) 15981

-[18] Wu, J.-M.; Han, C. S.; Wen, T. Nanotechnology 17 (2006) 105

-[19] Tian, Z. R.; Voight, J. A.; Liu, J.; Mckenzie, B.; Xu, H. J. Am. Chem. Soc. 125 (2003) 12384

-[20] Li, D.; Xia, Y. Nano Lett. 3 (2003) 555

-[21] Huanga, Z.-M.; Zhangb, Y. Z.; Kotakic, M.; Ramakrishna, S. Compos. Sci. Technol. 63 (2003) 2223

-[22] Sigmund, W.; Yuh, W. J.; Park, H.; Maneeratana, V.; Pyrgiotakis, G.; Daga, A.; Taylor, J.; Nino, J. C. J. Am. Ceram. Soc. 89 (2006) 395

-[23] Li, D.; M., J. T.; Xia, Y.; Marquezz, M. J. Am. Ceram. Soc. 89 (2006) 1861

-[24] ICDD Powder Diffraction Database, PCPDFWIN, PDF #211272.

-[25] ICDD Powder Diffraction Database, PCPDFWIN, PDF #211276.

-[26] A.M. Shehap, Kh.H.Mahmoud, M.F.H.Abdelkader, Tarek M.El-Basheer, Exp. Theo. NANOTECHNOLOGY 2 (2017) 103

-[27] Zhang, H.; Banfield, J. F. J. Mater. Res. 15 (2000) 437

-[28] Ranade, M. R.; Navrotsky, A.; Zhang, H. Z.; Banfield, J. F.; Elder, S. H.; Zaben, A.; Borse, P. H.; Kulkarni, S. K.; Doran, G. S.; Whitfield, H. J., Proc. Natl. Acad. Sci. 54 (2001) 54

-[29] Ding, X. Z.; Liu, X. H.; He, Y. Z. J. Mater. Sci. Lett. 15 (1996) 1789

-[30] Naser Al-Falahy, Omar Y. K. Alani, Exp. Theo. NANOTECHNOLOGY 3 (2019) 45

-[31] Young, R. A., The Rietveld method. International Union of Crystal-lography; Oxford University Press: Oxford, U.K., 2002.

-[32] Moser, J. Thesis No. 616, 1986.

-[33] Serpone, N.; Lawless, D.; Khairutdinov, R. J. Phys. Chem. 99 (1995) 16646

-[34] Smith, D. L.; Mailhiot, C. ReV. Mod. Phys. 62 (1990) 173

-[35] Guerra, J.M.Stress-inducedbandgap–shiftedsemiconductor photoectrolytic/ photocatalytic / photovoltaic surface and method for making same.U.S. Patent, 2003.

-[36] Camassel, J. Pascual, J. Mathieu, H. Phys. ReV. B 20 (1979) 5292

-[37] P/ Peter, Appl. Phys. Lett. 37 (2011) 2547

-[38] Lazzeri, M.; Selloni, A. Phys. ReV. Lett. 87 (2001) 266105

Downloads

Published

2020-01-15

Issue

Section

Articles

How to Cite

Optical properties of TiO2 Nanofibers. (2020). Experimental and Theoretical NANOTECHNOLOGY, 4(1), 1-10. https://doi.org/10.56053/4.1.1