Optical studies of InAs/GaAs quantum dot stacks for photovoltaic applications
DOI:
https://doi.org/10.56053/5.2.23Keywords:
InAs/GaAs, QDs, Optical, PVsAbstract
We have investigated the effect of post growth rapid thermal annealing on self-assembled InAs/GaAs mul tilayer QDs (MQD) overgrown with a combination barrier of InAlGaAs and GaAs for their possible use in photovoltaic device application. The samples were characterized by transmission electron microscopy and photoluminescence measurements. We noticed a thermally induced material interdiffusion between the QDs and the wetting layer in the MQD sample up to a certain annealing temperature. The QD heterostructure exhibited a thermal stability in the emission peak wavelength on annealing up to 700 ◦C . A phenomenological model has been proposed for this stability of the emission peak. The model considers the effect of the strain field, propagating from the underlying QD layer to the upper layers of the multilayer QD and the effect of indium atom gradient in the combination barrier layer due to the presence of a quaternary InAlGaAs layer.
References
-[1] A. Babinski, J. Jasin´ski, R. Bozek, A. Szepielow, J.M. Baranowski, Appl. Phys. Lett. 79 (2001) 2576
-[2] X.F. Yang, K. Fu, W. Lu, W.L. Xu, Y. Fu, J. Phys. D, Appl. Phys. 42 (2009) 125414
-[3] S. Chakrabarti, N. Halder, S. Sengupta, S. Ghosh, T.D. Mishima, C.R. Stanley, Nanotechnology 19 (2008) 505704
-[4] S.J. Xu, X.C. Wang, S.J. Chua, C.H. Wang, W.J. Fan, J. Jiang, X.G. Xie, Appl. Phys. Lett. 72 (1998) 3335
-[5] X.C. Wang, S.J. Xu, S.J. Chua, Z.H. Zhang, W.J. Fan, C.H. Wang, J. Jiang, X.G. Xie, J. Appl. Phys. 86 (1999) 2687
-[6] J. Tatebayashi, N. Hatori, M. Ishida, H. Ebe, M. Sugawara, Y. Arakawa, H. Sudo, A. Kuramata, Appl. Phys. Lett. 86 (2005) 053107
-[7] H.S. Lee, J.Y. Lee, T.W. Kima, M.D. Kim, J. Appl. Phys. 94 (2003) 6354
-[8] C.Y. Leea, J.D. Songa, Y.T. Leea, T.W. Kimb, Solid State Com- mun. 126 (2003) 421
-[9] E. Nabavi, T.J. Badcock, T. Nuytten, H.Y. Liu, M. Hopkinson, V.V. Moshchalkov, D.J. Mowbray, J. Appl. Phys. 105 (2009) 053512
-[10] S. Sengupta, N. Halder, S. Chakrabarti, Mater. Res. Bull. 45 (2010) 1593
-[11] N. López, A. Martí, A. Luque, C. Stanley, C. Farmer, P. Diaz, J. Sol. Energy Eng. 129 (2007) 319
-[12] S. Sengupta, N. Halder, S. Chakrabarti, Superlattices Microstruct.46 (2009) 611
-[13] N. Halder, S. Chakrabarti, C.R. Stanley, J. Nanosci. Nanotechnol. 8 (2008) 6232
-[14] R.B. Laghumavarapu, M.E. Emawy, N. Nuntawong, A. Moscho, L.F. Lester, D.L. Huffaker, Appl. Phys. Lett. 91 (2007) 243115
-[15] V. Popescu, G. Bester, M.C. Hanna, A.G. Norman, A. Zunger, Phys. Rev.B 78 (2008) 205321
-[16] S. Adhikary, N. Halder, S. Chakrabarti, S. Majumdar, S.K. Ray, M. Herrera, M. Bonds, N.D. Browning, J. Cryst. Growth 312 (2010) 724
-[17] N. Halder, J. Suseendran, S. Chakrabarti, M. Herrera, M. Bonds, N.D. Browning, J. Nanosci. Nanotechnol. 10 (2010) 5202
-[18] F.G. Ragay, M.R. Leys, P.A.M. Nouwens, W.C.V. Vleuten, J.H. Wolter, IEEE Electron Device Lett. 13 (1992) 618
-[19] S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, S. Panyakeow, Sol. Energy Mater. Sol. Cells 90 (2006) 2968
-[20] Abraham George, Exp. Theo. NANOTECHNOLOGY 5 (2021) 37
-[21] Zain A. Muhammad, Tariq J. Alwan, Exp. Theo. NANOTECHOLOGY 5 (2021) 47
-[22] Aseel I. Mahmood, Shehab A. Kadhim, Nadia F. Mohammed, Intisar A. Naseef, Exp. Theo. NANOTECHNOLOGY 5 (2021) 57
-[23] Abdulrahman Khaleel Suliman, Mustafa Saeed Omar, Exp. Theo. NANOTECHNOLOGY 5 (2021) 65