Structural properties of chalcogenides nanostructures

Authors

  • Dao H. Zhang School of Electrical and Electronic Engineering, S2 Nanyang Technological University, Nanyang Avenue, 639798 Singapore Author
  • D. Chua Department of Materials Science and Engineering, National University of Singapore 117574, Singapore Author

DOI:

https://doi.org/10.56053/6.1.7

Keywords:

Chalcogenide, Nanostructure, Mechanical.

Abstract

Following the discovery of carbon fullerenes and nanotubes (NTs), nanostructured materials and their synthesis have attracted tremendous attention due to their superior mechanical properties, their unique electronic behavior, and their high potential in making technologically advanced nanodevices. Among different classes, layered metal chalcogenides nanostructures are of interest for a variety of applications ranging from nanoelectronics or as source materials for energy applications, nanotribology and in heterogeneous catalysis. These nanoparticles are metastable phases. Therefore, equilibrium methods are necessary to prevent the formation of the thermodynamically stable bulk phase. On the other hand, high energies are needed to “knit” together the folded layers. Several physical techniques such as laser ablation and arch discharge are used for the synthesis of these inorganic NTs and fullerene-like particles. Apart from these high-energy techniques other processes such as oxide-to-sulfide conversion, hydrothermal, solvothermal, or wet chemical synthesis were found to be useful for the synthesis of these particles.

References

-[1] S. Iijima, Nature, 354, 56, 1991

-[2] R. Tenne, L. Margulis, M. Genut, and G. Hodes, Nature, 360, 444, 1992

-[3] Y. R. Hachohen, E. Grunbaum, J. Sloan, J. L. Hutchison, and R. Tenne, Nature, 395, 336, 1998

-[4] H. A. Therese, F. Rocker, A. Reiber, J. Li, M. Stepputat, G. Glasser, U. Kolb, and W. Tremel, Angew. Chem., 117, 267, 2005

-[5] J. Chen, S.-L. Li, Z.-L. Tao, Y.-T. Shen, C.-X. Cui, J. Am. Chem. Soc., 125, 5284,2003

-[6] J. A. Hollingsworth, D. M. Poojary, A. Clearfied, and W. E. Buhro, J. Am. Chem. Soc., 122, 3562, 2000

-[7] D. J. Srolovitz, S. A. Safran, M. Homyonfer, and R. Tenne, Phys. Rev. Lett., 74, 1779, 1995

-[8] (a) W. Tremel, and E. W. Finckh, Chem. unserer Zeit, 38, 326, 2004. (b) W. Tremel, Angew. Chem., 111, 2311, 1999; Angew. Chem. Int., Ed. 38, 2175, 1999

-[9] D. Li, X. L. Li, R. R. He, J. Zhu, and Z. X. Deng, J. Am. Chem. Soc., 124, 1411, 2002

-[10] Anissa A. Putri, S. Kato, N. Kishi, T. Soga, Exp. Theo. NANOTECHNOLOGY 3 (2019) 61

-[11] R. Tenne, L. Margulis, M. Genut, and G. Hodes, Nature, 360, 444, 1992

-[12] I. Alexandrou, N. Sano, A. Burrows, R. R. Meyer, H. Wang, A. I. Kirkland, C. J. Kiely, and G. A. J. Amaratunga, Nanotechnology, 14, 913, 2003

-[13] J. J. Hu, J. E. Bultman, and J. S. Zabinski, Tribol. Lett., 17, 543, 2004

-[14] G. A. Camacho-Bragado, J. L. Elechiguerra, A. Olivas, S. Fuentes, D. Galvan, and M. J. Yacaman, J. Catal., 234, 182, 2005

-[15] D. Juárez, H. E. Castillo García, Exp. Theo. NANOTECHNOLOGY 3 (2019) 71

-[16] Y. Feldman, G. L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J. L. Hutchison, and R. Tenne, J. Am. Chem. Soc., 118, 5362,1996

-[17] Y. Feldman, L. Margulis, M. Homyonfer, and R. Tenne, High. Temp. Mater. Proc., 15, 163, 1996

-[18] Y. Feldman, A. Zak, R. Popovitz-Biro, and R. Tenne, Solid State Sci., 2, 663, 2000

-[19] A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, and R. Tenne, J. Am. Chem Soc., 122, 11108, 2000

-[20] X. L. Li, and Y. D. Li, Chem. Eur. J., 9, 2726, 2003

-[21] J.A. Pyon, J. Yamaha, C. Cheroke, Exp. Theo. NANOTECHNOLOGY 3 (2019) 95

-[22] T. Tsirlina, Y. Feldman, M. Homyonfer, J. Sloan, J. L. Hutchison, and R. Tenne, Fullerene Sci. Technol., 6, 157, 1998

-[23] R. L. D. Whitby, W. K. Hsu, T. H. Lee, C. B. Boothroyd, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett., 359, 68, 2002

-[24] K. S. Coleman, J. Sloan, N. A. Hanson, G. Brown, G. P. Clancy, M. Terrones, H. Terrones, and M. L. H. Green, J. Am. Chem. Soc., 124, 11580, 2002

-[25] A. Margolin, R. Popovitz-Biro, A. Albu-Yaron, A. Moshkovich, L. Rapoport, and R. Tenne, Curr. Nanosci., 1, 253, 2005

-[26] C. Schuffenhauer, R. Popovitz-Biro, and R. Tenne, J. Mater. Chem., 12, 1587, 2002

-[27] G. H. Lee, J. W. Jeong, S. H. Huh, S. H. Kim, B. J. Choi, and Y. W. Kim, Int. J. Mod Phys., B 17, 1134, 2003

-[28]C. M. Zelenski, and P. K. Dorhout, J. Am. Chem. Soc., 120, 734, 1998

-[29] J. Chen, S. L. Li, F. Gao, and Z. L. Tao, Chem. Mater., 15, 1012, 2003

-[30] M. Nath, A. Govindaraj, and C. N. R. Rao, Adv. Mater., 13, 283, 2001

-[31] C. N. R. Rao, and M. Nath, Dalton Trans., 1, 2003

-[32] M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsar, P. Stadelmann, F. Levy, and D. Mihailovic, Science, 292, 479, 2001

-[33] M. Remskar, Z. Skraba, M. Regula, C. Ballif, R. Sanjines, and F. Levy, Adv. Mater., 10, 246, 1998.

-[34] P. A. Parilla, A. C. Dillon, B. A. Parkinson, K. M. Jones, J. Alleman, G. Riker, D.S. Ginley, and M. J. Heben, J. Phys. Chem. B., 108, 6197, 2004

-[35] Y. R. Hacohen, R. Popovitz-Biro, Y. Prior, S. Gemming, G. Seifert, and R. Tenne, Phys. Chem. Chem. Phys., 5, 1644, 2003

-[36] R. Sen, A. Govindaraj, K. Suenaga, S. Suzuki, H. Kataura, S. Iijima, and Y. Achiba, Chem. Phys. Lett., 340, 242, 2001

-[37] C. Schuffenhauer, B. A. Parkinson, N. Y. Jin-Phillipp, L. Joly-Pottuz, J. M. Martin, R. Popovitz-Biro, and R. Tenne, Small, 1, 1100, 2005

-[38] D. Vollath, and D.V. Szabo, Mater. Lett., 35, 236, 1998

-[39] D. Vollath, and D. V. Szabo, Acta Mater., 48, 953, 2000

-[40] X. L. Li, J. P. Ge, and Y. D. Li. Chem, Eur. J., 10, 6163, 2004

-[41] S. Bastide, D. Duphil, J. P. Borra, and C. Levy-Clement, Adv. Mater., 18, 106, 2006

-[42] S. Banerjee, M. G. C. Kahn, and S. S. Wong, Chem. Eur. J., 9, 1898, 2003

-[43] P. D. Cozzoli, A. Kornowski, and H. Weller, J. Am. Chem. Soc., 125, 14539, 2003

-[44] K. Ausman, R. Piner, O. Lourie, R. S. Rouff, and M. D. Korobov, J. Phys. Chem. B., 104, 8911, 2000

-[45] (a) R. Nudelman, O. Ardon, Y. Hadar, Y. Chen, J. Libman, and A. Shanzer, J. Med. Chem., 41, 1671, 1998

-[46] N. M. Dimitrijevic, Z. V. Saponjic, B. M. Rabatic, and T. Rajh, J. Amer. Chem. Soc., 127, 1344, 2005

-[47] G. Ramakrishna, and H. N. Ghosh, J. Phys. Chem. B., 105, 7000, 2001

-[48] J.-W. Huang, and S. J Bai, Nanotechnol., 16, 1406, 2005

-[49] T. Paunesku, T.Rajh, G. Wiederrecht, J. Maser, T. Vogt, N. Stojicevic, M. Protic, B. Lai, J. Oryhon, M. Thurnauer, and G. Woloschak, Nature Mater., 2, 343, 2003

Downloads

Published

2022-01-15

Issue

Section

Articles

How to Cite

Structural properties of chalcogenides nanostructures. (2022). Experimental and Theoretical NANOTECHNOLOGY, 6(1), 7-14. https://doi.org/10.56053/6.1.7