Density functional theory of Ca/F co-doped anatase TiO2

Authors

  • R. Sahnoun Department of Chemistry, Faculty of Computing and Applied Sciences, Baze University Abuja, Nigeria Author

DOI:

https://doi.org/10.56053/7.2.78

Keywords:

DFT, Doping, TiO2

Abstract

In order to understand the improved photocatalytic activity of Ca/F co-doped TiO2, the lattice parameters, energy band structures, density of states and absorption spectra of pure, Ca doped, F doped and Ca/F co-doped anatase TiO2 were calculated by first principles based on the density functional theory. It was found that the doping can result in lattice distortion of TiO2, especially the biggest lattice distortion was generated by the Ca/F co-doping. The forbidden energy band width of anatase TiO2 was broadened by Ca or F doping, while it was reduced by Ca/F co-doping. The calculated electronic density of states indicated that Ca doping provided contribution to the valence band of TiO2, and F doping resulted in the highest energy level occupied by electrons appeared in the conduction band. The energy band of TiO2 almost kept unchanged after Ca/F co-doping except the reduction of forbidden band width. Therefore, the experimentally obtained photocatalytic activity improvement of TiO2 co-doped with Ca and F may have resulted from the reduction of forbidden band width of TiO2.

References

-[1] K. Masumoto, N. Koguchi, S.Takahashi, T. Kiyosawa and I. Nakatani, Sci. Rept. National Res. Inst. Metals 6 (1985) 101

-[2] Zayd Ahmad Shahizam, Abdel Mohsen Benoudjit, Nurnazihah Mohamad, Firdaus Abd-Wahab, Wan Wardatul Amani Wan Salim, Exp. Theo. NANOTECHNOLOGY 4 (2020) 239

-[3] Adnan AL-Maamury, Dhifaf Ahmed, Exp. Theo. NANOTECHNOLOGY 4 (2020) 253

-[4] A.Ishida, K. Muramatsu, H.Takashiba and H. Eujiyasu, Appl. Phys. Lett. 55 (1989) 430

-[5] N. Koguchi and S. Takahashi, Appl. Phys. Lett. 58 (1991) 799

-[6] Mochizuki. H. Iwata. M. Isshiki and K. Masumoto, J. Crystal Growth 115 (1991) 687

-[7] C. Jain, J. R. Willis, and R. Bullogh. Adv. Phys.39 (1990) 127

-[8] E.A. albanesi, E.L Peltzer, Y. Blanca and A.G. Petukhov, Computational Materials Science, 32 (2005) 85

-[9] Hassanen Abdulhussaen Jassim, A. A. Al-Rubaiee, Iman Tarik Al-Alawy, Exp. Theo. NANOTECHNOLOGY 4 (2002) 263

-[10] V. Hinkel, H. Hoak, C. Mariana, L. Sorba, K. Horn, N.E. Christensen, Phys. Rev. B 40 (1989) 5549

-[11] A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev. Lett. 65 (1990) 353

-[12] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, an Augmented Plane Wave Plus Local Orbitals Program for- Calculating Crystal Properties (Vienna University of Technology, Vienna, Austria (2001)

-[13] J. P. Perdew, S. Burke, and M. Ernzerhof, Phys.Rev.Lett. 77 (1996) 3865

-[14] E. Engel and S. H.Vosko, Phys. Rev. B 47 (1993) 13164

-[15] F. D. Murnaghan, Proc. Natl.Acad. Sci. USA 30 (1944) 5390

-[16] H. Luo, R.G. Greene, K.G. Handechari, T. Li and A.L. Ruoff, Phys. Rev. B 50 (1994) 16232

-[17] Z. Charifi, H. Baaziz, F. El Haj Hassan and N. Bouarissa, J. Phys.: Condens. Matter 17 (2005) 4083

-[18] Mohamed Lach-had, Dimitrios A. Papaconstantopoulos, Michael J. Mehl, Journal of Physics and Chemistry of Solids 63 (2002) 833

-[19] O. Madelung, M. Schulz, H. Weiss (Eds), Numerical Data and Functional Relationships in science and technology Landolt-Bornstei, New Series, vol. 17, Springer, Berlin, (1983).

-[20] A. Zaoui and F. El Haj Hassan, J. Phys: Condens. Matter 13 (2001) 253

-[21] L. Vegard, Z. Phys. 5 (1921) 17

-[22] J. Jobst, D. Hommel, U. Lunz, T. Gerhard, and G. Landwehr, Appl. Phys. Lett. 69, 97 (1996).

-[23] F. El Haj Hassan, Phys. Stat. Sol. (b) 242 (2005) 909

-[24] P. Dufek, P. Blaha, and K. Schwarz, Phys. Rev. B 50 (1994) 7279

-[25] G. B. Bachelet and N. E. Christensen, Phy. Rev B 31 (1995) 879

-[26] J. E. Bernard and A. Zunger, Phys. Rev. Lett. 34 (1986) 5992

-[27] L. Pauling, Journal of the American Chemical Society, 54 (1932) 3570

Downloads

Published

2023-04-15

Issue

Section

Articles

How to Cite

Density functional theory of Ca/F co-doped anatase TiO2. (2023). Experimental and Theoretical NANOTECHNOLOGY, 7(2), 78-86. https://doi.org/10.56053/7.2.78