Structural, electronic, and optoelectronic properties of XYZ2 (X=Zn,Cd; Y=Si,Sn; Z=pnicogens) Chalcopyrite compounds: First-principles calculations

Authors

  • Oula Jabbar Physics Department, College of Science, University of Basrah, Basrah 61004, Iraq Author
  • Ali H. Reshak Physics Department, College of Science, University of Basrah, Basrah 61004, Iraq Author

DOI:

https://doi.org/10.56053/7.1.41

Keywords:

Chalcopyrite, DFT; Electronic, Optoelectronic

Abstract

Structural, optoelectronic and electronic characteristics of the semiconductor chalcopyrite XYZ2 (X=Zn, Cd; Y=Si, Sn; Z=P) are predicted using first-principleS calculations. The (PBE-GGA) is used for the geometrical relaxation whereas the (TB-mBJ) potential is used to determine the ground state properties. The bandgap decreases by substituting Si by Sn in XYP2. The calculated energy bandgap values exhibit good consistency with experimental evidence and prior theoretical findings. The d-states of Zn and Cd contribute greatly to the density of states in XSiP2, Sn-d states are predominant in the XSnP2. Given its great reflectivity in UV region makes XYP2 good candidate for photonic and optoelectronic devices.

References

-[1] M. C. Ohmer and R. Pandey, MRS Bulletin 23 (1998) 1622

-[2] J. L. Shay, and J. H. Wernick, Ternary Chalcopyrite Semi-conductors: Growth, Electronic Properties and Applications, Pergamon Press, Oxford, (1975)

-[3] Kazmerski L L, NuovoCimento 20 (1983) 2013

-[4] T. Yokoyama, F. Oba, A. Seko, H. Hayashi, Y. Nose, I. Tanaka., Applied Physics Express 6 (2013) 061201

-[5] C. Yan and D. Xue, Funct. Mater. Lett. 1 (2008) 37

-[6] J. L. Shay, K. J. Bachmann, E. Buehler, J. H. Wernick., Applied Physics Letters 23 (1973) 226

-[7] U. Rau and H. W. Schock, Appl. Phys. A 69 (1999) 131

-[8] B. J. Stanbery, Crit. Rev. Solid State Mater. Sci. 27 (2002) 73

-[9] J. Kessler, J. Wennerberg, M. Bodegard, L. Stolt, Sol. Energy Mater.Sol. Cells 75 (2003) 35

-[10] G. C. Bhar, Jpn. J. Appl. Phys. Suppl. 653 (1993) 32

-[11] Z. Zhang, D. T. Reid, S. C. Kumar, M. E.-Zadeh, P. G. Schunemann, K. T. Zawilski, C. R. Howle. Optics Letters, 38 (2013) 5110

-[12] W. Feng, D. Xiao, J. Ding, Y. Yao, Phys. Rev. Lett. 106 (2011) 016402

-[13] V.L. Shaposhnikov, A.V. Krivosheeva, V.E. Borisenko, J.L. Lazzari, F.A. Avitaya, Phys. Rev. B 85 (2012) 205201

-[14] D. O. Scanlon, & A. Walsh, Appl. Phys. Lett. 100 (2012) 251911

-[15] J. L. Shay, B. Tell, E. Buehler, & J. H. Wernick, Phys. Rev. Lett. 30 (1973) 983

-[16] Martinez, A. D. et al. Energy Environ. Sci. 9 (2016) 1031

-[17] Martinez, A. D., Fioretti, A. N., Toberer, E. S. & Tamboli, A. C. J. Mater. Chem. A 5 (2017) 11418

-[18] Martinez, A. D. et al. J. Mater. Chem. C 6 (2018) 2696

-[19] Liu, H. et al. Mater. Res. Express 5 (2018) 126303

-[20] Verma, A. S. Physica Status Solidi (b), 246 (2009) 192

-[21] C. H. L. Goodman, Semiconductor Science and Technology 6 (1991) 725

-[22] V. Petrov, Progress in Quantum Electronics 44 (2015) 654

-[23] Gautam, R., Singh, P., Sharma, S., Kumari, S., & Verma, A. S. Superlattices and Microstructures 85 (2015) 859

-[24] Sibghat ullah, G. Murtaza, R. Khenata, A. H. Reshak, S. S. Hayat, S. Bin Omran. Physica B 441 (2014) 94

-[25] Lv, Z.-L., Cheng, Y., Chen, X.-R., & Ji, G.-F. Computational Materials Science 77 (2013) 114

-[26] He, Z., Zhao, B., Zhu, S., Chen, B., Hou, H., Yu, Y., & Xie, L. Computational Materials Science 72 (2013) 26

-[27] V. Petrov, F. Noack, I. Tunchev, P. Schunemann, K. Zawilski, Proc. SPIE 21 (2009) 7197

-[28] Verma, A. S., Gautam, R., Singh, P., Sharma, S., Kumari, S. Materials Science and Engineering B 205 (2016) 18

-[29] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Technisch Universitat, Wien, Austria, ISBN 3-9501031-1-2, (2001)

-[30] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Letts. 77 (1996) 3865

-[31] F. Tran, P. Blaha, Phys. Rev. Lett. 102 (2009) 226401

-[32] P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864

-[33] W. Kohn, L. J. Sham, Phys. Rev. A 140 (1965) 1133

-[34] Hu, J., Shi, L., Qin, Y., Jin, F., Duan, Y., Qiu, L., & Chen, L. Materials Science in Semiconductor Processing 35 (2015) 149

-[35] Abrahams, S. C., & Bernstein, J. L. The Journal of Chemical Physics, 55 (1971) 796

-[36] Rubenstein, M., Ure, R. W. Journal of Physics and Chemistry of Solids 29 (1968) 551

-[37] Chiker, F., Abbar, B., Aourag, H., Tadjer, A., Bresson, S., Khelifa, B., Mathieu, C. Chemical Physics 298 (1968) 135

-[38] Sahin, S., Ciftci, Y. O., Colakoglu, K., Korozlu, N. Journal of Alloys and Compounds 529 (2012) 1

-[39] Isomura, S., & Masumoto, K. Physica Status Solidi (a) 6 (1971) K139

-[40] Chiker, F., Abbar, B., Tadjer, A., Aourag, H., Khelifa, B. Materials Science and Engineering B 98 (2003) 81

-[41] Chiker, F., Abbar, B., Tadjer, A., Bresson, S., Khelifa, B., & Mathieu, C. Physica B: Condensed Matter 349 (2004) 181

-[42] Sreeparvathy, P. C., Kanchana, V., & Vaitheeswaran, G. Journal of Applied Physics 119 (2016) 085701

-[43] J. E. Jaffe, and A. Zunger, Physical Review B 30 (1984) 741

-[44] Humphreys, R. G., & Pamplin, B. R. Le Journal de Physique Colloques 36 (1975) C3

-[45] K. Bougherara, F. Litimein, R. Khenata, E. Uçgun, H.Y. Ocak, S¸. Ugur, G.Ugur, A.H. Reshak, F. Soyalp, S. Bin-Omran, Sci. Adv. Mater. 5 (2013) 97

-[46] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, oxford University Press, Oxford, (1954)

-[47] Fox, M. “Optical properties of solids; Second ed.”; Oxford University Press: New York, (2010)

-[48] S. Sahin, Y.O. Ciftci, K. Colakoglu, N. Korozlu, J. Alloy. Comp. 529 (2012) 1

-[49] Y. Shen, Z. Zhou, J. Appl. Phys. 103 (2008) 074113

-[50] Gani, A., Cheref, O., Ghezali, M., Rabah, M., Reshak, A. H., Djaballah, Y., Belasri, A. Chinese Journal of Physics 47 (2020) 547

-[51] St-jean P, Seryogin G.A., Francoeur S, Appl. Phys. Lett. 96 (2010) 231913

-[52] Hou, H. J., Zhu, H. J., Xu, J., Zhang, S. R., Xie, L. H. Brazilian Journal of Physics 46 (2016) 628

Downloads

Published

2023-01-15

Issue

Section

Articles

How to Cite

Structural, electronic, and optoelectronic properties of XYZ2 (X=Zn,Cd; Y=Si,Sn; Z=pnicogens) Chalcopyrite compounds: First-principles calculations. (2023). Experimental and Theoretical NANOTECHNOLOGY, 7(1), 41-54. https://doi.org/10.56053/7.1.41