Quantitative analysis and calibration curve of human gallstone using LIBS technology for nanotechnological application

Authors

  • Ali Maher alshammari Sfax University, Science College, Laboratory of Applied Physics, Department of Physics, BP 1171 Sfax, Tunisia Author
  • Tagreed K Hamad Al-Nahrain University, Engineering College, Laser and Optoelectronics Department, Baghdad, Iraq Author
  • Alaa Jabbar Ghazai Al-Nahrain University, Science College, Medical Physics Department, Baghdad, Iraq Author
  • Mohamed Dammak Sfax University, Science College, Laboratory of Applied Physics, Department of Physics, BP 1171 Sfax, Tunisia Author

DOI:

https://doi.org/10.56053/10.1.131

Keywords:

LIBS, Gallbladder stones, ICP-OES

Abstract

In this study, quantitative and qualitative analysis of gallstones collected from Iraq patients living in Baghdad, Iraq have been done using LIBS technique. Firstly, to determine the concentration of collected gallstone elements, a calibration curve has been proposed as spectral line intensity against element concentrations. The elements within the stones are divided into two parts. the first one is phosphors (P), sodium (Na), magnesium (Mg), copper (Cu), aluminium (Al) and sulphur (S), while the second one are trace elements such as bismuth, boron, titanium, and antimuon.  The results of the ICP-OES calibration demonstrated excellent linearity across all analysed elements, with correlation coefficients (R²) exceeding 0.98, indicating robust regression models. Magnesium (Mg) and aluminium (Al) exhibited the highest sensitivities due to efficient emission at their selected wavelengths, while sulphur (S) showed
lower sensitivity, likely due to weaker spectral lines indicated that it is possible to use this technique to analyse the elements within the gallstone faster and more accurate than any other techniques. clarify that ICP-OES is used as a reference technique to be compared with LIBS.

References

-[1] Nabaa Abbas Zubaidi, Mustafa Kareem AL-Azzawi, Marwan Saleh Mahdi, Murtadha Hadi Ajmi, Experimental and Theoretical NANOTECHNOLOGY 9 (2025) 15 https://doi.org/10.56053/9.S.15

-[2] P. Lindblom, Anal. Chim. Acta 380 (1999) 353 https://doi.org/10.1016/S0003-2670(98)00475-9

-[3] T.A. Labutin, A.M. Popov, V.N. Lednev, N.B. Zorov, Spectrochim. Acta B 64 (2009) 938 10.1016/j.sab.2009.07.033

-[4] V. Zaichick, S. Zaichick, J. Radioanal. Nucl. Chem. 309 (2016) 295 10.4172/2327-4360.1000121

-[5] F.J. Fortes, J. Moros, P. Lucena, L.M. Cabalín, J.J. Laserna, Anal. Chem. 85 (2013) 640 https://doi.org/10.1021/ac303220r

-[6] B. Song et al., Electron. 1 (2023) 13 https://doi.org/10.1016/j.scib.2023.06.001

-[7] A. Ruas, A. Matsumoto, H. Ohba, K. Akaoka, I. Wakaida, Spectrochim. Acta B 131 (2017) 99 10.1016/j.sab.2017.03.014

-[8] S.J. Pandey, M. Martinez, F. Pelascini, V. Motto-Ros, M. Baudelet, R.M. Gaume, Opt. Mater. Express 7 (2017) 627 https://doi.org/10.1364/OME.7.000627

-[9] D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, Wiley, 2013 10.1002/0470093013

-[10] W.T. Silfvast, Laser Fundamentals, Cambridge Univ. Press, Cambridge, 2004

-[11] N. Schlatter, B.G. Lottermoser, S. Illgner, S. Schmidt, Chemosensors 11 (2023) 479 https://doi.org/10.3390/chemosensors11090479

-[12] J.O. Cáceres, J. Tornero López, H.H. Telle, A. González Ureña, Spectrochim. Acta B 56 (2001) 831 https://doi.org/10.1016/S0584-8547(01)00173-2

-[13] Zainab R.Muslim, Ali Q . Kadhum, Zina A. Al Shadidi, Smah A. Kadhum, Exp. Theo. NANOTECHNOLOGY 9 (2025) 79 https://doi.org/10.56053/9.S.79

-[14] E.A. Shaffer, Best Pract. Res. Clin. Gastroenterol. 20 (2006) 981 10.1016/j.bpg.2006.05.004

-[15] Ali Q. Kadhum, Zainab R. Muslim, Zina A. Al Shadidi, Asmaa S. Khaleel, Exp. Theo. NANOTECHNOLOGY 9 (2025) 87 https://doi.org/10.56053/9.S.87

-[16] P. Portincasa, A. Moschetta, G. Palasciano, Lancet 368 (2006) 230 10.1016/S01406736(06)69044-2

-[17] A. Di Ciaula, D.Q. Wang, P. Portincasa, Liver Int. 38 (2018) 1380 https://doi.org/10.1111/eci.13846

-[18] G.E. Njeze, Niger. J. Surg. 19 (2013) 49 10.4103/1117-6806.119236

-[19] Fadhaa Bader Hadi, Ahmed Jadah Farhan, Exp. Theo. NANOTECHNOLOGY 9 (2025) 93 https://doi.org/10.56053/9.S.93

-[20] Hussein Shundi Alhajj Al-Gharbawi, Marwan Saleh Mahdi, Mustafa Naeem Nuhair Al-sarray, Sajjad Jawad Kadhi Al-sarray, Experimental and Theoretical NANOTECHNOLOGY 9 (2025) 27 https://doi.org/10.56053/9.S.27

-[21] K.S. Gurusamy et al., Nature 349 (2014) 6716 10.1016/j.pharmthera.2020.107750

-[22] V. Kohli et al., Biometals 30 (2017) 395 https://doi.org/10.3390/ijms24032430

-[23] J.Y. Lee et al., Nutrients 11 (2019) 1957 10.1155/2024/6252426

-[24] J.O. Nriagu, J.M. Pacyna, Nature 333 (1988) 134 https://doi.org/10.1038/333134a0

-[25] Hajir Maher Abdullah, Mojahid M. Najim, Ban A. Yousif, Experimental and Theoretical NANOTECHNOLOGY 9 (2025) 39 https://doi.org/10.56053/9.S.39

-[26] D. Krewski et al., J. Toxicol. Environ. Health 10 (2007) 1 10.1080/10937400701597766

-[27] A. Ahmed et al., J. Trace Elem. Med. Biol. 2 (2019) 163 https://doi.org/10.1016/j.heliyon.2019.e03134

-[28] Alaa M. Theban, Falah H. Ali, Experimental and Theoretical NANOTECHNOLOGY 9 (2025) 51

https://doi.org/10.56053/9.S.51

Downloads

Published

2026-01-15

Issue

Section

Articles

How to Cite

Quantitative analysis and calibration curve of human gallstone using LIBS technology for nanotechnological application. (2026). Experimental and Theoretical NANOTECHNOLOGY, 10(1), 131-139. https://doi.org/10.56053/10.1.131