Experimental and finite element analysis of porous functionally graded blend (PLA\UHMWPE/PVA)

Authors

  • Enas al-Zubaidy Department of Engineering of Polymer and Petrochemical Industries, College of Materials Engineering, University of Babylon, Hillah, Iraq Author
  • Ahmed Fadhil Hamza Department of Engineering of Polymer and Petrochemical Industries, College of Materials Engineering, University of Babylon, Hillah, Iraq Author
  • Zuhair Jabbar Abdul Ameer Department of Prosthetics and Orthotics, College of Engineering, University of Karbala, Karbala, Iraq Author

DOI:

https://doi.org/10.56053/10.1.109

Keywords:

FGBs, FEM, Femoral stem Prosthesis

Abstract

To simulate the structure of living tissues and find alternatives with similar properties, and to reduce the differences between orthopedic and hip implants, functional grading is used to fabricate artificial replacements for a part of the knee joint, study their mechanical properties, and analyze the results using the finite element method. Functionally graded blends (10%-50% wt. PLA)/ (90%-50% wt. UHMWPE)/ 50% wt. PVA) are used. A porous implant is chosen instead of a solid one to reduce the stress-shielding
effect. Finite element analysis (FEA) is used to analyze the stress-shielding effect of FGB under the loads acting on porous hip implants as an alternative to dense stems. Hardness and tensile tests are performed to analyze the behavior of functionally graded blend samples and a functionally graded porous hip implant model under critical loads, and are analyzed using a digital microscope to determine the count and average pore size. The implant design is found to be sensitive to the functional grading factor  .
Under tensile conditions, when the prosthetic leg model (PFGBs) structure takes a gradient according to stiffness values from the lowest (39.08) to the highest (46.9), dislocation and loosening are observed at the maximum tensile force at a displacement of (50 mm) for the highest total deformation of (16.564 mm) and the maximum von Mises stress of (12.736 MPa). While the prosthetic leg model under tension, when the (PFGBs) structure takes a gradient according to stiffness values from the highest (46.9) to the lowest (39.08), dislocation and loosening occur at the maximum tensile force and at the point of contact of the ball head with the leg under tensile loading conditions at a displacement of (50 mm) for the highest total deformation of (18.904 mm) and the maximum von Mises stress of (22.559 MPa).

References

-[1] J.M. Hatamzadeh, Y. Omidi, Prog. Polym. Sci. 47 (2015) 26 0.1002/pi.1887

-[2] H.Z. A., Y.L. Xie, Y.X. Wang, L.P. Mo, Y.Y. Yang, Z.Y. Zhang, Mater. Chem. Phys. 114 (2009)

10.1201/9781003509523-1

-[3] K.G. Adhikari, P. Cass, M. Bown, P. Gunatillake, RSC Adv. 5 (2015) 37553

https://doi.org/10.1039/D0RA07800J

-[4] Z.Q. Cheng, F. Wang, Z. Chen, Y. Jiang, Z. Zhong, IEEE Int. Conf. Autom. Sci. Eng. (2015) 15

1088/1361-665X/ace66c

-[5] Z.J. Guo, H. Xu, B. Cao, ACS Appl. Mater. Interfaces 5 (2013) 7893

https://doi.org/10.1002/adfm.202206900

-[6] Israa Abdulqasim Mohammed Ali, Wafaa Hikmat Wadee, Kamal Mohammed Abood, Exp. Theo.

NANOTECHNOLOGY 9 (2025) 423 https://doi.org/10.56053/9.S.423

-[7] F.G. F. Cavanagh, L.M. Cavanagh, A. Afonja, R. Binions, Sensors 10 (2010) 5469

https://doi.org/10.1038/s41598-017-00891-5

-[8] K.F. Wang, J. Zhang, H. Xia, B. Zhu, Y. Wang, S. Wu, Mater. Sci. Eng. B 150 (2008) 6

https://doi.org/10.3390/s100605469

-[9] D.A. Manurung, R.V. Asri, L.A. Yuliarto, B. Nugraha, N. Nugraha, B. Sunendar, Indones. J. Chem.

(2018) 344 https://doi.org/10.1016/j.jma.2020.02.003

-[10] N.M. Abdullah, N. Demon, S.Z.N. Halim, I.S. Mohamad, Polymers 13 (2021) 1916 10.1088/14024896/ac4943

-[11] W.F. Gu, T.M. Swager, J. Am. Chem. Soc. 130 (2008) 5392 10.1039/c1cc11517k

-[12] M.A. Salam, M.S. Makki, M.Y. Abdelaal, J. Alloys Compd. 509 (2011) 2582 https://doi.org/10.1016/j.jmrt.2022.03.099

-[13] H.A. Ahmad, F. Mohammad, Materialia 14 (2020) 100868 https://doi.org/10.30723/ijp.v22i4.1181

-[14] J.G.V. Rajendran, Mater. Lett. 139 (2015) 116 10.3390/biom9100611

-[15] W.F. Gu, T.M. Swager, J. Am. Chem. Soc. 130 (2008) 5392 https://doi.org/10.1021/cm102406h

-[16] Marwa Sulaiman, Enas Muhi Hadi, Exp. Theo. NANOTECHNOLOGY 9 (2025) 431 https://doi.org/10.56053/9.S.431

-[17] M. Trifkovic, A. Hedegaard, K. Huston, M. Sheikhzadeh, C.W. Macosko, Macromolecules 45

(2012) 6036 10.1021/ma300293v

-[18] M. Trifkovic, A.T. Hedegaard, M. Sheikhzadeh, S. Huang, C.W. Macosko, Macromolecules 48

(2015) 4631 https://doi.org/10.1021/ma020754t

-[19] Zainab Naseer Hasheem, Estabraq Talib Abdullah, Experimental and Theoretical

NANOTECHNOLOGY 9 (2025) 303 https://doi.org/10.56053/9.S.303

-[20] N.R. Washburn, C.G. Simon Jr., A. Tona, H.M. Elgendy, A. Karim, E.J. Amis, J. Biomed. Mater.

Res. 60 (2002) 20 https://doi.org/10.1002/jbm.a.30054

-[21] Rana A. Anaee, Rana A. Anaee, Marwa A. Abbas, Saja A. Abdul Maged, Shaimaa A. Naser, Sinan

S. Hamdi, Hussain M. Yousif, Nabil J. AL-Bahnam, Tamara A. Anai, Exp. Theo.

NANOTECHNOLOGY 9 (2025) 449 https://doi.org/10.56053/9.S.449

-[22] K. Foroutan, A. Shaterzadeh, H. Ahmadi, Appl. Math. Model. 77 (2020) 539

https://doi.org/10.1016/j.apm.2019.07.062

-[23] Y. Torres, J. Trueba, A. Cabezas, J. Pavón, F.J. Gil, Mater. Des. 110 (2016) 179

https://doi.org/10.1016/j.matdes.2016.07.135

-[24] Sundus A. Abdullah Albakri, Aya F. Ibrahim, Hawraa A. Hussein, Experimental and Theoretical

NANOTECHNOLOGY 9 (2025) 311 https://doi.org/10.56053/9.S.311

-[25] S. Huzni, M.I. Tanamas, S. Fonna, A.K. Ariffin, IOP Conf. Ser. Mater. Sci. Eng. 931 (2020) 012001

1088/1757-899X/602/1/012086

-[26] M. Ceddia, G. Solarino, G. Giannini, G. De Giosa, M. Tucci, B. Trentadue, J. Compos. Sci. 8 (2024)

https://doi.org/10.3390/jcs8070254

-[27] H.S. Hedia, N. Fouda, Mater. Test. 55 (2013) 23 https://doi.org/10.3139/120.110400

-[28] V.T. Van, N.H.T. Tai, N.N. Hung, J. Sci. Technol. Civ. Eng. 15 (2021) 141

https://doi.org/10.1142/S0219455425502360

-[29] Rusul Adnan Al-wardy, Experimental and Theoretical NANOTECHNOLOGY 9 (2025) 327

https://doi.org/10.56053/9.S.327

-[30] S. Wachirahuttapong, C. Thongpin, N. Sombatsompop, Energy Procedia 89 (2016) 198

https://doi.org/10.1016/j.egypro.2016.05.026

-[31] J.W. Park, D.J. Lee, E.S. Yoo, S.S. Im, S.H. Kim, Y.H. Kim, Korea Polym. J. 7 (1999) 93

https://doi.org/10.1007/BF03218391

-[32] Ahmed S. Hassan, Jasim H. Kadhum, Sarmad Najah ALSalhy, Osama T. Al-Taai, Experimental

and Theoretical NANOTECHNOLOGY 9 (2025) 335 https://doi.org/10.56053/9.S.335

-[33] Y. Hu, Q. Wang, M. Tang, Carbohydr. Polym. 96 (2013) 384

https://doi.org/10.3390/molecules28145416

Downloads

Published

2026-01-15

Issue

Section

Articles

How to Cite

Experimental and finite element analysis of porous functionally graded blend (PLA\UHMWPE/PVA). (2026). Experimental and Theoretical NANOTECHNOLOGY, 10(1), 109-121. https://doi.org/10.56053/10.1.109