Correlation between microstructure and optical transparency of PLD-derived nanostructured La₂O₃
DOI:
https://doi.org/10.56053/10.1.81Keywords:
La2O3 NPs, FESEM, XRDAbstract
Lanthanum oxide (La₂O₃) thin films were synthesized using the pulsed laser deposition (PLD) method to explore their potential in optoelectronic device applications. High-purity La₂O₃ pellets were fabricated by palletisation with polyvinyl alcohol (PVA) as a binder and subsequently sintered to enhance mechanical strength. The deposition is carried out using a Nd:YAG laser (λ = 532 nm, 1000 mJ, 6 Hz) onto fluorine-doped tin oxide (FTO) substrates under a vacuum pressure of 10⁻² torr. Post-growth analyses included X-ray diffraction (XRD) to determine the crystalline structure, atomic force microscopy (AFM) for surface topography, Fourier-transform infrared spectroscopy (FTIR) and the vibrational characteristics of the La₂O₃ films were examined using Raman spectroscopy, and their optical response, including absorption and transmittance behaviour, is evaluated through UV–Vis spectroscopic analysis. Results confirmed the formation of polycrystalline films with homogeneous grain distribution and minimal surface roughness. Optical absorption studies demonstrated high transparency in the visible spectrum and revealed a direct band gap energy of 3.80 eV highlighting the suitability of La₂O₃ thin films for optoelectronic and photonic applications.
References
-[1] K. Parimala Gandhi, S. Hemalatha, S. Sruthi, J. Environ. Nanotechnol. 13 (2024) 1 0.13074/jent.2024.06.241538
-[2] S. Ahmad, A.U. Rahman, S. Azam, J. Phys. Chem. Solids 201 (2025) 112621 10.1007/s11696-02403323-7
-[3] Z. Shan, C. Zhang, X. Wang, Y. Liu, H. Wu, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 66 (2025) 87 10.13036/17533562.64.6.05
-[4] Maksood Adil Mahmoud Al-Doori, Asaad T. Al-Douri, Nahedh Ayad Faris, Exp. Theo. NANOTECHNOLOGY 9 (2025) 489 https://doi.org/10.56053/9.3.489
-[5] Shams Munaf Fathi, Noora Abd Al-Kareem, Experimental and Theoretical NANOTECHNOLOGY 9 (2025) 199 https://doi.org/10.56053/9.S.199
-[6] Ahmed Suhail Hussein, Younis W. Younis, Saeb Jasim Mohammed Alnajm, Shaimaa Tarik
Mahmood, Sama Amer Abbas El-Tekreti, Mais Qasem Mohammed, Mais Qasem Mohammed, Ali Y. Alwan, Abbas Saeb Zaham, Asaad T. Al-Douri, Noor Khalid Ismael, Maksood Adil Mahmoud AlDoori, Exp. Theo. NANOTECHNOLOGY 9 (2025) 505 https://doi.org/10.56053/9.3.505
-[7] J. Chen, Y. Hou, G. Li, Surf. Coat. Technol. 513 (2025) 132464 10.1016/j.surfcoat.2025.132464
-[8] J. Budida, C.S. Rao, N.R. Chand, R.K. Guntu, J. Electron. Mater. 59 (2025) 199
3390/solids5030024
-[9] J. Budida, C.S. Rao, N.R. Chand, R.K. Guntu, N.K. Mohan, J. Alloys Compd. 1037 (2025) 182433
1016/j.jallcom.2025.181904
-[10] A. Chakravorty, S. Das, S. Luktuke, A.A. Mini, V. Raghavan, Talanta Open 7 (2025) 100546
https://doi.org/10.1016/j.talo.2025.100546
-[11] Hayder Ridha Ali, Waleed Ibrahim Yaseen, Experimental and Theoretical NANOTECHNOLOGY
(2025) 209 https://doi.org/10.56053/9.S.209
-[12] M. Rasheed, O. Alabdali, S. Shihab, A. Rashid, T. Rashid, J. Phys.: Conf. Ser. 1999 (2021) 012078
1088/1742-6596/1999/1/012078
-[13] Y. Zhao, M. Toyama, K. Kita, K. Kyuno, A. Toriumi, Appl. Phys. Lett. 89 (2006) 133507
https://doi.org/10.1002/adma.201706364
-[14] M. Sellam, M. Rasheed, S. Azizi, T. Saidani, Ceram. Int. 50 (2024) 20917
18586/msufbd.1762798
-[15] R. Jalal, S. Shihab, M.A. Alhadi, M. Rasheed, J. Phys.: Conf. Ser. 1660 (2020) 012090
1088/1742-6596/1879/2/022122
-[16] S. Shihab, M. Rasheed, O. Alabdali, A.A. Abdulrahman, J. Phys.: Conf. Ser. 1879 (2021) 022120
1088/1742-6596/1879/2/022001
-[17] Saad Ahmed Alnuaimi, D. Vaishnavi, Huda Ghazi Hameed, Exp. Theo. NANOTECHNOLOGY 9
(2025) 513 https://doi.org/10.56053/9.3.513
-[18] Nihal H. Jabr, Ahmed K.Abbas, Isam M.Ibrahim, Experimental and Theoretical
NANOTECHNOLOGY 9 (2025) 227 https://doi.org/10.56053/9.S.227
-[19] H. Kabir, S.H. Nandyala, M.M. Rahman, M.A. Kabir, A. Stamboulis, Appl. Phys. A 124 (2018)
10.7251/COMEN2201045Z
-[20] Sama Abd-a lrazaq Latif, Kamal M. Abood, Experimental and Theoretical NANOTECHNOLOGY 9 (2025) 237 https://doi.org/10.56053/9.S.237
-[21] Sura Hameed Ahmed Ali, Sarah Abdulsalam Hattab, Wafaa Mahdi Salih, Sanaa Mahdi Salih, Experimental and Theoretical NANOTECHNOLOGY 9 (2025) 247 https://doi.org/10.56053/9.S.247
-[22] S.M. George, M. Leskelä, D.J. Gratson, J. Vac. Sci. Technol. A 26 (2008) 82 https://doi.org/10.1021/jp905317n
-[23] Kamil Jawad, Hani Mizhir, Malik N. Hawas, Experimental and Theoretical NANOTECHNOLOGY 9 (2025) 259 https://doi.org/10.56053/9.S.259
M.N. Shabbir, A. Shoaib, M. Iqbal, Ceram. Int. 50 (2024) 4404 https://doi.org/10.1021/acsomega.8b02278
-[25] M. Rasheed, M.N. Al-Darraji, S. Shihab, A. Rashid, T. Rashid, J. Phys.: Conf. Ser. 1963 (2021)
10.1088/1742-6596/1963/1/012059
-[26] Mahdi Hasan Suhail, Zina A. Al Shadidi, Qudama Kh. Hammad, Saja Neama Kareem, Experimental and Theoretical NANOTECHNOLOGY 9 (2025) 273 https://doi.org/10.56053/9.S.273
-[27] Y. Cho, Y. Kim, S. Lee, J. Appl. Phys. 115 (2014) 213503 10.1063/1.4868091
-[28] T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 7 (1978) 321 10.1002/jrs.1250070606
-[29] P.D. Battle, A.K. Cheetham, R.K. Broadhurst, J. Solid State Chem. 66 (1987) 251 https://doi.org/10.1088/0022-3719/15/26/007
-[30] A. Keziz, M. Rasheed, M. Heraiz, F. Sahnoune, A. Latif, Ceram. Int. 49 (2023) 37423 10.1016/j.ceramint.2023.09.068
-[31] M. Rasheed, S. Shihab, O. Alabdali, A. Rashid, T. Rashid, J. Phys.: Conf. Ser. 1999 (2021) 012077 10.1088/1742-6596/1999/1/012077
-[32] Z. Lu, K. Tuokedaerhan, H. Cai, H. Du, R. Zhang, Coatings 13 (2023) 1085 https://doi.org/10.3390/coatings13061085
-[33] X. Wang, H. Liu, L. Zhao, C. Fei, X. Feng, S. Chen, Y. Wang, Nanoscale Res. Lett. 12 (2017) 233 https://doi.org/10.1002/adfm.202200516
-[34] E. Kadri, K. Dhahri, R. Barillé, M. Rasheed, Phase Transit. 94 (2021) 65 10.1088/17426596/1963/1/012058
-[35] A. Keziz, M. Heraiz, F. Sahnoune, M. Rasheed, Ceram. Int. 49 (2023) 32989 https://doi.org/10.1016/j.ceramint.2023.07.275
-[36] Awatiff A. Mohammed, Seenaa I. Hussein, Nadia A. Ali, Ahmed Q. Abdullah, Hassan A. Ashoor, Experimental and Theoretical NANOTECHNOLOGY 9 (2025) 287 https://doi.org/10.56053/9.S.287
-[37] D. Bouras, M. Rasheed, Opt. Quantum Electron. 54 (2022) 4161 https://doi.org/10.1016/j.matchemphys.2020.123633
-[38] A. Zubaidi, L.M. Asaad, I. Alshalal, M. Rasheed, J. Mech. Behav. Mater. 32 (2023) 59 10.1515/jmbm-2024-0034
-[39] R. Ashraf, M. Rasheed, et al., Fractal Fract. 7 (2023) 673 10.3390/fractalfract7090673
-[40] O.Y.M. Alabdali, A. Guessab, Appl. Math. Comput. 247 (2014) 1129 https://doi.org/10.1186/s13660-020-02436-3
-[41] M. Rasheed, O.Y. Mohammed, S. Shihab, A. Al-Adili, J. Phys.: Conf. Ser. 1999 (2021) 012080 10.1088/1742-6596/1999/1/012080
-[42] M. Rasheed, M.N. Al-Darraji, S. Shihab, A. Rashid, T. Rashid, J. Phys.: Conf. Ser. 1963 (2021) 012059 10.1088/1755-1315/1262/2/022005
-[43] M. Enneffatia, M. Rasheed, B. Louati, K. Guidara, S. Shihab, R. Barillé, J. Phys.: Conf. Ser. 1795 (2021) 012050 10.1088/1742-6596/1795/1/012050
-[44] M. Rasheed, O.Y. Mohammed, S. Shihab, A. Al-Adili, J. Phys.: Conf. Ser. 1795 (2021) 012043 doi:10.1088/1742-6596/1795/1/012043
-[45] A.H. Ali, A.S. Jaber, M.T. Yaseen, M. Rasheed, O. Bazighifan, T.A. Nofal, Complexity 2022 (2022) 9367638 10.1155/2022/9367638
-[46] M. Ismael, T. Rashid, M.A. Sarhan, M. Rasheed, I.M. Sala, Eureka Phys. Eng. 4 (2023) 29 10.52688/ASP66811
-[47] M. Rasheed, et al., J. Adv. Biotechnol. Exp. Ther. 6 (2023) 495 10.5455/jabet.2023.d144
-[48] Estabraq Talib Abdullah, Malik Rashid Khasheet, Zainab Naseer Hasheem, Exp. Theo. NANOTECHNOLOGY 9 (2025) 373 https://doi.org/10.56053/9.S.373
-[49] M. Rasheed, I. Alshalal, A.A. Ashed, M.A. Sarhan, A.S. Jaber, Indones. J. Electr. Eng. Comput. Sci. 33 (2024) 653 https://doi.org/10.1515/jmbm-2025-0040
-[50] I.M. Mohammed, M. Rasheed, AIP Conf. Proc. 3321 (2025) 020026 doi:10.3390/su12083213
-[51] F. Boudou, A. Belakredar, A. Berkane, M. Rasheed, Not. Sci. Biol. 17 (2025) 12183 10.55779/nsb17212183