Structural and photocatalytic insights into anatase TiO2 nanostructure for dye degradation

Authors

  • Ali Q. Tuama College of Science, Al-Karkh University of Science, Baghdad, Iraq Author
  • Ghaiath A. Fadhil College of Science, Al-Karkh University of Science, Baghdad, Iraq Author
  • Ghaiath A. Fadhil College of Engineering, Al-Karkh University of Science, Baghdad, Iraq Author
  • Wael A. S. Al-dulaimi College of Engineering, Al-Karkh University of Science, Baghdad, Iraq Author

DOI:

https://doi.org/10.56053/10.1.25

Keywords:

Titanium dioxide, Sol–gel, Nanostructures, Photocatalysis, Methylene blue

Abstract

TiO2 nanostructures are synthesized through Sol-gel method using titanium tetracypropoxide (TTIP) as the precursor. Acetic acid is used as chelating and peptizing agent and the deionized water as a solvent the prepared gels are deposited on glass substrates through dip-coating and subjected to controlled temperatures calcinations. X-ray diffraction (XRD) and field emission scanning electron microscopy (SEM) are used to characterize the obtained materials structurally morphologically. The findings indicated the dominance of the anatase phase with crystallites sizes of nanometers. Although SEM analysis showed a network such as a nanostructure of the particles that are less than 100 nm. To assess the possible environment application. Photocatalytic activity of the synthesized TiO 2 films is studied by observing the decomposition of the methylene blue (MB) dye under Uv. The findings had shown that the Sol-gel prepared TiO2 displays good photocatalytic behavior. Where the calcine sample had a dye degradation greater than 80% with the reaction time of 120 minutes. The increased performance is due to better crystallinity and preponderance of anatase phase as compared to lower activity in the noncalcine sample. This observation proves the point. Therefore, Sol gel approach is a
simple and effective route to the production of TiO2 nanostructures, which can be used in the purification of wastewater.

References

-[1] Chen Xiaobo, Samuel S. Mao, Chemical reviews 107.7 (2007) 2891

https://doi.org/10.1021/cr0500535

-[2] Prashant V Kamat, The Journal of Physical Chemistry C 116.22 (2012) 11849

https://doi.org/10.1021/jp305026h

-[3] D. Ziental, B. Czarczynska-Goslinska, D.T. Mlynarczyk, A. Glowacka-Sobotta, B. Stanisz, T.

Goslinski, L. Sobotta, Nanomaterials 10.2 (2020) 387 https://doi.org/10.3390/nano10020387

-[4] William Vallejo, Mauricio Meza, Fernando Durán, Carlos Diaz-Uribe, Cristian Quiñones, Elmar

Schott, Xavier Zarate, Chemistry 7 (2025) 177 https://doi.org/10.3390/chemistry7060177

-[5] Yujing Ma, Xiaobo Wang, Yudong Jia, Xintong Chen, Yujie Mao, Junjun Xu, Chemical Reviews

19 (2014) 9987 https://doi.org/10.1021/cr500008u

-[6] Fernando G. Durán, Carlos Diaz-Uribe, Wilmar Vallejo, Alejandro Muñoz-Acevedo, Elmar Schott,

Xavier Zarate, ACS Omega 8 (2023) 27284 https://doi.org/10.1021/acsomega.3c02657

-[7] Andani Mkhohlakali, Te-Chang Jen, Kagiso Ledwaba, Sphamandla Mapukata, Hafeni M. Mabowa,

Mothusi R. Letsoalo, Nchu Ntsasa, Juliana Tshilongo, Frontiers in Chemical Engineering 6 (2024)

https://doi.org/10.3389/fceng.2024.1352283

-[8] Bijay Pant, Min Park, Soo-Jin Park, Coatings 9.10 (2019) 613

https://doi.org/10.3390/coatings9100613

-[9] Ugo Bellè, Maria Rossi, Luca Bianchi, Alessandro Conti, Catalysts 13 (2023) 494

https://doi.org/10.3390/catal13030494

-[10] Altaf A. Abdulwahid, Huda H. H. Al-Ani, Ali S. Mohammed, Inorganica Chimica Acta 501 (2020)

https://doi.org/10.1016/j.ica.2019.119268

-[11] Eka Widyastuti, Chien-Ting Chiu, Jiun-Ling Hsu, Yu-Chun Lee, Arabian Journal of Chemistry 16

(2023) 105010 https://doi.org/10.1016/j.arabjc.2023.105010

-[12] W. Gibbs, M. Torris, Experimental and Theoretical NANOTECHNOLOGY 3 (2019) 103

https://doi.org/10.56053/3.1.103

-[13] Kok-On Ong, Jun Cheong, Fah Heong, Experimental and Theoretical NANOTECHNOLOGY 4

(2020) 1 https://doi.org/10.56053/4.1.1

-[14] Carmine Calabrese, Anja Maertens, Andrea Piras, Cristina Aprile, Luigi F. Liotta, Nanomaterials

(2023) 1928 https://doi.org/10.3390/nano13131928

-[15] Chang Jia, Xiaoyan Zhang, Peng Yang, Applied Surface Science 430 (2018) 457

https://doi.org/10.1016/j.apsusc.2017.06.163

-[16] Nirmala Geetha, Shanmugam Sivaranjani, Abdul Ayeshamariam, Mariadhas Valan Arasu,

Nallusamy Punithavelan, Experimental and Theoretical NANOTECHNOLOGY 2 (2018) 139–150

https://doi.org/10.56053/2.3.139

-[17] Maria A. Gatou, Anastasia Syrrakou, Niki Lagopati, Efthimia A. Pavlatou, Reactions 5 (2024) 135

https://doi.org/10.3390/reactions5010007

-[18] Wei Jei, Jin Lim, Hung Hoa, Experimental and Theoretical NANOTECHNOLOGY 4 (2020) 47–

https://doi.org/10.56053/4.3.47

-[19] Rafik Sahnoun, Experimental and Theoretical NANOTECHNOLOGY 7 (2023) 78

https://doi.org/10.56053/7.2.78

-[20] Muhammad Asjad, Muhammad Arshad, Naila A. Zafar, Muhammad A. Khan, Ahmed Iqbal, Ali

Saleem, Abdulrahman Aldawsari, Materials Chemistry and Physics 265 (2021) 124416

https://doi.org/10.1016/j.matchemphys.2021.124416

-[21] Ali Q. Tuama, Fadhil K. Farhan, Abothur Almohana, International Journal of Mechanical

Engineering 7 (2022) 448.

-[22] Thamer A. A. Hassan, Ali Q. Tuama, Ghaiath A. Fadhil, MINAR Congress of Pure, Applied and

Technological Sciences 12 (2024) 239.

-[23] Hayat Khan, Catalysts 15 (2025) 64 https://doi.org/10.3390/catal15010064

-[24] Umar Samad, Muhammad Alam, Hisham Abdo, Ali Anis, Saad Al-Zahrani, Polymers 15 (2023)

https://doi.org/10.3390/polym15143100

-[25] Rida Rashid, Imran Shafiq, Muhammad R. H. S. Gilani, Muhammad Maaz, Parveen Akhter,

Muhammad Hussain, Kwang-Eun Jeong, Eui-Eun Kwon, Seung Bae, Yong-Ki Park, Chemosphere 349

(2024) 140703 https://doi.org/10.1016/j.chemosphere.2023.140703

-[26] Mehdi Rostami, Alireza Badiei, Mohammad R. Ganjali, Mohammad Rahimi-Nasrabadi, Majid

Naddafi, Hossein Karimi-Maleh, Environmental Research 212 (2022) 113347

https://doi.org/10.1016/j.envres.2022.113347

Downloads

Published

2026-01-15

Issue

Section

Articles

How to Cite

Structural and photocatalytic insights into anatase TiO2 nanostructure for dye degradation. (2026). Experimental and Theoretical NANOTECHNOLOGY, 10(1), 25-36. https://doi.org/10.56053/10.1.25