Inhibitory effect of silver oxide nanoparticles and Saccharomyces cerevisiae on Escherichia coli and Staphylococcus aureus bacteria
DOI:
https://doi.org/10.56053/10.1.13Keywords:
Saccharomyces cerevisiae, Silver oxide, Nanoparticles, Staphylococcus aureusAbstract
Baker's yeast, or Saccharomyces cerevisiae, is a unicellular fungus that has been extensively studied and used as a suitable biofactory for the production of bio nanoparticles. The study aims to investigate the inhibitory effect of silver oxide nanoparticles on pathogenic bacteria. This study examines the biosynthesis, characterization, and antibacterial efficacy of silver oxide nanoparticles (AgO-NPs) that
are synthesized from Saccharomyces cerevisiae extract. Pathogenic bacteria, specifically Staphylococcus aureus and Escherichia coli, are isolated and identified from diarrhoea samples and utilized as test organisms. Phytase enzyme is isolated from both commercial and locally sourced S. cerevisiae yeast using solvent extraction and precipitation techniques. The isolated enzyme functioned
as a biocatalyst in the eco-friendly creation of AgO nanoparticles. Silver oxide is reduced and stabilized using the enzymatic extract, resulting in nanoparticles that are later characterized by FTIR, UV–vis spectroscopy, and scanning electron microscopy (SEM). FTIR examination verified the existence of functional groups, including hydroxyl, carbonyl, and amine groups, signifying the participation of
proteins, phenols, and polysaccharides in the stabilization of nanoparticles. The UV–vis spectra exhibited a large absorption peak at 400–430 nm, indicative of surface plasmon resonance (SPR) in silver nanoparticles, whereas SEM micrographs displayed spherical, agglomerated nanoparticles with an average diameter of 53 nm. The antibacterial activity is evaluated using the well-diffusion method
against Staphylococcus aureus and Escherichia coli. The AgO-NPs demonstrate concentration dependent inhibition, achieving maximum inhibition zones of 15 mm and 16 mm, respectively, at 100 mg/dl. The results indicate the promise of yeast-derived silver oxide nanoparticles as environmentally sustainable and efficient antibacterial agents against pathogenic microorganisms.
References
-[1] J. Y. Sung, Deng Z, S.W. Kim. Antibiotics 14 (2025) 301 https://doi.org/10.3390/antibiotics14030301
-[2] E. Cojocaru, O. R. Petriș, C. Cojocaru, Pharmaceuticals 12 (2024) 1059 https://doi.org/10.3390/ph17081059
-[3] A. A. Yetisgin, S. Cetinel, M. Zuvin, A. Kosar, O. Kutlu, Molecules 8 (2020) 2193 https://doi.org/10.3390/molecules25092193
-[4] M. Parapouli, A. Vasileiadis, A. S. Afendra, AIMS Microbiol 6 (2020) 31 https://doi.org/10.3934/microbiol.2020001
-[5] H. Barabadi, H. Vahidi, M. Arjmand, M. Abdorashidi, R. Jahani, S. Amidi, O. Hosseini, S. Sadeghian-Abadi, K. Jounaki, F. Ashouri. Inorganic Chemistry Communications 1 (2024) 112291 https://doi.org/10.1016/j.inoche.2024.112291
-[6] Badis Bendjemil, Maram Mechi, Khaoula Safi, Mounir Ferhi, Karima Horchani Naifer, Exp. Theo. NANOTECHNOLOGY 8 (2024) 51 https://doi.org/10.56053/8.3.51
-[7] A. Bouafia, S. E. Laouini, A. S. Ahmed, A. V. Soldatov, H. Algarni, K. Feng Chong, G. A. Ali, Nanomaterials 6 (2021) 2318 https://doi.org/10.3390/nano11092318
-[8] I. X. Yin, J. Zhang, I. S. Zhao, M. L. Mei, Q. Li, C. H. Chu. Int. J. Nanomedicine 15 (2020) 2562
-[9] B. Khalandi, N. Asadi, M. Milani, S. Davaran, A. J. Abadi, E. Abasi, A. Akbarzadeh, Drug research
(2017) 6 https://doi.org/10.1055/s-0042-113383
-[10] P. L. Ipata, G. Cercignani. In Methods in Enzymology 51 (1978) 401 https://doi.org/10.1016/S00766879(78)51053-7
-[11] M. Gauthami, N. Srinivasan, N. M. Goud, K. Boopalan, K. Thirumurugan, Nanoscience & Nanotechnology-Asia 1 (2015) 7 https://doi.org/10.2174/221068120501150728103209
-[12] P. Ramesh, A. Rajendran, A. Meenakshisundaram, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 125 (2014) 78 https://doi.org/10.1016/j.saa.2013.12
-[13] A. Gade, S. Gaikwad, N. Duran, M. Rai, Micron 1 (2014) 9 https://doi.org/10.1016/j.micron.2013.12.005
-[14] S. Razavi, A. Partoazar, N. Takzaree, M. Fasihi‐Ramandi, A. Bahador, M. H. Darvishi, Nanomedicine 13 (2018) 1331 https://doi.org/ 10.2217/nnm-2017-0385
-[15] Y. S. Liu, Y. C. Chang, H. H. Chen, J. Food and Drug Analysis 1 (2018) 56 https://doi.org/10.1007/s40264-014-0250-z
-[16] N. E. El-Naggar, N. A. Abdelwahed, W. I. Saber, A. Egyptian Journal of Biological Pest Control 26 (2016) 644 https://doi.org/10.3390/molecules30030684
-[17] S. Pasieczna-Patkowska, M. Cichy, J. Flieger. Molecules 30 (2025) 684 https://doi.org/10.3390/molecules30030684
-[18] S. Khairunnisa, V. Wonoputri, T. W. Samadhi, Materials Science and Engineering 1 (2021) 012006
https://doi.org/10.1088/1757-899X/1143/1/012006
-[19] N. Saidi, P. Owlia, S. M. A. Marashi, H. Saderi, Iran J. Microbiol 11 (2019) 254 doi:10.4014/jmb.2008.08053
-[20] M. D. S. F. Lima, K. M. S. Souza, W. W. C. Albuquerque, J. A. C. Teixeira, M. T. H. Cavalcanti, A. L. F. Porto, Microb Pathog 110 (2017) 677 https://doi.org/10.1016/j.micpath.2017.05.010
-[21] M. Akruddin, M. N. Hossain, M. M. Ahmed, BMC Complement Altern Med. 110 (2017) 677 10.1159/000512494
-[22] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, M. J. Yacaman,
Nanotechnology 16 (2005) 2353 https://doi.org/ 10.1088/0957
-[23] W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S Ou-Yang, Y. B.Chen, Applied Microbiology and Biotechnology 85 (2011) 1122 10.1007/s00253-009-2159-5
-[24] M. Rai, A. Yadav, A. Gade, Biotechnology Advances 30 (2012) 627 https://doi.org/10.2174/1573413123
-[25] A. Iswarya, M. Anjugam, B. Vaseeharan, Fish Shellfish Immunol 68 (2017) 64 https://doi.org/10.1016/j.fsi.2017.07.002
-[26] M. Rai, A. Yadav, A. Gade, Biotechnology Advances 27 (2009) 76 10.1016/j.biotechadv.2008.09.002
-[27] H. H. Lara, N. V. Ayala-Núñez, L. Ixtepan-Turrent, C. Rodríguez-Padilla, World Journal of Microbiology and Biotechnology 26 (2010) 615 https://doi.org/10.1007/s11274-009-0211-3
-[28] Asaad T. Al-Douri, Alaa A. Khaleel, Luay Mannaa ibrahim , Abeer Talib Abdulqader , Ammr Khalid Shihab , Mustafa Khaleel Ibrahim , Maksood Adil Mahmoud Al-Doori. Exp. Theo. NANOTECHNOLOGY 9 (2025) 563 https://doi.org/10.56053/9.4.563
-[29] Maksood Adil Mahmoud Al-Doori , Nahedh Ayad Faris, Noor Adnan Mahmood, Asaad T. AlDouri, Luay Mannaa ibrahim , Amna M.
Al-Tikrity. Exp. Theo. NANOTECHNOLOGY 9 (2025) 555 https://doi.org/10.56053/9.4.555
-[30] C. Marambio-Jones, E. M. Hoek, Journal of Nanoparticle Research 12 (2010) 1531 https://doi.org/10.1007/s11051-010-9900-y
-[31] A. M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P. T. Kalaichelvan, R. Venketesan, Nanomedicine: Nanotechnology, Biology and Medicine 6
(2010) 103 https://doi.org/10.1016/j.nano.2009.04.006
-[32]Maksood Adil Mahmoud Al-Doori, Asaad T. Al-Douri, Nahedh Ayad Faris. Exp. Theo. NANOTECHNOLOGY 9 (2025) 503 https://doi.org/10.56053/9.3.465
-[33] Ahmed Suhail Hussein,Noor Khalid Ismael, Asaad T. Al-Douri, Abbas Saeb Zaham, Ali Y.Alwan1, Mais Qasem Mohammed, Sama Amer Abbas El-Tekreti, Shaimaa Tarik Mahmood, Saeb Jasim Mohammed Alnajm,Younis W. Younis, Maksood Adil Mahmoud Al-Doori. Exp. Theo.
NANOTECHNOLOGY 9 (2025) 512 https://doi.org/10.56053/9.3.505
-[34] Safa Salah Salman, Asaad T. Al-Douri, Albosale Abbas Hadi,Saeb Jasim Mohammed Alnajm. Exp. Theo. NANOTECHNOLOGY 9 (2025) 372 https://doi.org/10.56053/9.2.361