Limitations of quantum error correction in noisy intermediatescale quantum (nisq) systems
DOI:
https://doi.org/10.56053/10.1.1Keywords:
Quantum error correction, Noisy Intermediate-Scale Quantum, QubitAbstract
Study of the Issue Quantum error correction (QEC) is crucial yet incurs significant qubit overhead costs.The current QEC codes lack sufficient efficiency for near-term devices. The current generation of NISQ devices, which often rely on delicate nanostructured qubit architectures, is prone to noise, decoherence, and gate faults, which severely limit their computing capability and scalability. While traditional quantum error correction codes, such as the surface code, are theoretically resilient, they often require significant qubit overhead and complex management systems that exceed the hardware capabilities of NISQ-era devices. This raises the question of whether new, resource-efficient QEC strategies or hybrid error mitigation approaches can be tailored to the limits of nanostructured NISQ designs. This document examines the constraints of existing quantum error correction (QEC) codes, which are crucial for preserving the fidelity of quantum computations yet require substantial qubit resources. This study examines the shortcomings of current Quantum Error Correction (QEC) codes in relation to Noisy Intermediate-Scale Quantum (NISQ) devices and explores alternative strategies to create more efficient, low-overhead QEC frameworks appropriate for imminent quantum technologies.
References
-[1] Asaad T. Al-Douri, Alaa A. Khaleel, Luay Mannaa Ibrahim, Abeer Talib Abdulqader, Ammr Khalid Shihab, Mustafa Khaleel Ibrahim, Maksood Adil Mahmoud Al-Doori, Exp. Theo. NANOTECHNOLOGY 9 (2025) 563 https://doi.org/10.56053/9.4.563
-[2] Mehmet Keçeci, Open Science Articles 1 (2025) 36 https://doi.org/10.5281/zenodo.17328737
-[3] Bisma Bilal, Suhaib Ahmed, Vipan Kakkar, Exp. Theo. NANOTECHNOLOGY 3 (2019) 33 https://doi.org/10.56053/3.1.33
-[4] Muhammad AbuGhanem, quant-ph 3 (2024) 1 https://doi.org/10.48550/arXiv.2410.00917
-[5] Mehmet. Keçeci, Open Science Articles 1 (2025) 1 https://doi.org/10.5281/zenodo.15515113
-[6] Yutaro Akahoshi, Kazunori Maruyama, Hirotaka Oshima, Shintaro Sato, Keisuke Fujii, PRX quantum 5 (2024) 010337 https://doi.org/10.1103/PRXQuantum.5.010337
-[7] Riki Toshio, Yutaro Akahoshi, Jun Fujisaki, Hirotaka Oshima, Shintaro Sato, Keisuke Fujii, Physical Review X 15 (2025) 021057 https://doi.org/10.1103/PhysRevX.15.021057
-[8] Carmen G Almudéver, Leonid Pryadko, Valentin Savin, Bane Vasic, Dagstuhl Reports, 14 (2024) 173 https://doi.org/10.4230/DagRep.14.5.173
-[9] Bin Cheng, Xiu-Hao Deng, Xiu Gu, Yu He, Guangchong Hu, Peihao Huang, Jun Li, Ben-Chuan Lin, Dawei Lu, Yao Lu, Chudan Qiu, Hui Wang, Tao Xin, Shi Yu, Man-Hong Yung, Junkai Zeng, Song Zhang, Youpeng Zhong, Xinhua Peng, Franco Nori, Dapeng Yu, Frontiers of Physics 18 (2023) 21308 https://doi.org/10.1007/s11467-022-1249-z
-[10] David Layden, Mo Chen, Paola Cappellaro, Physical review letters 124 (2020) 020504 https://doi.org/10.1103/PhysRevLett.124.020504
-[11] Valentine Nyirahafashimana, Nurisya Mohd Shah, Umair Abdul Halim, Mohamed Othman, Quantum Information Processing 24 (2025) 292 https://doi.org/10.1007/s11128-025-04904-5
-[12] Connor T Hann, Kyungjoo Noh, Harald Putterman, Matthew H Matheny, Joseph K Iverson, Michael T Fang, Christopher Chamberland, Oskar Painter, Fernando GSL Brandão, PRX Quantum 6 (2025) 030305 https://doi.org/10.1103/75x7-5ysv
-[13] Subrata Das, Swaroop Ghosh, Quantum Physics 3 (2025) 1 https://doi.org/10.48550/arXiv.2505.06165
-[14] A. M. Ahmed Alwaise, Raqeeb H. Rajab, Adel A. Mahmood, Mohammed A. Alreshedi, Exp. Theo. NANOTECHNOLOGY 8 (2024) 67 https://doi.org/10.56053/8.3.67
-[15] Qurban A Memon, Mahmoud Al Ahmad, Michael Pecht, Quantum Reports, 6 (2024) 627 https://doi.org/10.3390/quantum6040039
-[16] Francesc Rodríguez-Díaz, David Gutiérrez-Avilés, Alicia Troncoso, Francisco MartínezÁlvarez, ACM Computing Surveys 58 (2025) 1 https://doi.org/10.1145/3764582
-[17] Keyi Yin, Xiang Fang, Zhuo Chen, Ang Li, David Hayes, Eneet Kaur, Reza Nejabati, Hartmut Haeffner, Wes Campbell, Eric Hudson, Quantum Physics 5 (2025) 1 https://doi.org/10.48550/arXiv.2504.16303
-[18] Maria S. da Dunla, Exp. Theo. NANOTECHNOLOGY 8 (2024) 23 https://doi.org/10.56053/8.2.23
-[19] Dominic J. Williamson, Nouédyn Baspin, Nature Communications 15 (2024) 9528 https://doi.org/10.1038/s41467-024-53881-3
-[20] Muhammad AbuGhanem, EPJ Quantum Technology 12 (2025) 102 https://doi.org/10.1140/epjqt/s40507-025-00405-7
-[21] Yusuke Hama, Hirofumi Nishi, Scientific Reports 14 (2024) 6077 https://doi.org/10.1038/s41598-024-52485-7
-[22] Yasunari Suzuki, Suguru Endo, Keisuke Fujii, Yuuki Tokunaga, PRX Quantum 3 (2022) 010345 https://doi.org/10.1103/PRXQuantum.3.010345
-[23] I Trond, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Nikita Astrakhantsev, Juan Atalaya, Ryan Babbush, Dave Bacon, Brian Ballard, Nature 638 (2025) 27 https://doi.org/10.1038/s41586-024-08449-y
-[24] Guo Zheng, Wenhao He, Gideon Lee, Liang Jiang, Physical Review Letters 132 (2024) 250602 https://doi.org/10.1103/PhysRevLett.132.250602
-[25] J. S. Kith N. M. Slaber, Exp. Theo. NANOTECHNOLOGY 9 (2025) 9 https://doi.org/10.56053/9.1.9
-[26] Nick S. Blunt, Laura Caune, Róbert Izsák, Earl T. Campbell, Nicole Holzmann, PRX Quantum 4 (2023) 040341 https://link.aps.org/doi/10.1103/PRXQuantum.4.040341