Enhancement of thermal and electrical properties of graphene-based hybrid nanomaterials for solar cell applications
DOI:
https://doi.org/10.56053/9.4.571Keywords:
Reduced graphene oxide (rGO), Nanocomposites, Solar cellsAbstract
This paper outlines the synthesis, hybridization, and application of reduced graphene oxide (rGO) based nanomaterial that have been upgraded with metallic and metal oxide nanoparticles in an effort to enhance the performance of Solar cells. The graphene oxide (GO) is prepared based on a modified Hummers and later reduced to rGO based on ascorbic acid. The hybrid nanocomposites are prepared incorporating the rGO with silver nanoparticles (AgNPs) and titanium dioxide (TiO2) nanoparticle through simple chemical route. The XRD, SEM, FTIR, UV-Vis and TGA experiments are utilized in the structural, morphological, and spectroscopic analysis of the characterized properties. Electrical properties are demonstrated that rGO AgNP samples have an average electrical conductivity of 720 ± 25 S/m whereas hat of pristine rGO is improved by 45%. In the thermal analysis, the rGO superior in increased degradation temperature (T <sub>max</sub>) rGO-AgNP composite by 28% Optical characterization is shown to result in a significant narrowing of bandgaps in hybrid samples leading to increased light absorption. The solar cell devices that have been fabricated using these hybrid films show some considerable performance improvement and the power conversion efficiency is as high as 5.84 ± 0.18 %, which is 63% higher than the control. Statistical significance of the improvements show that one way ANOVA and regression modeling data analysis are significant (p < 0.05). These results fit the fact that rGO-nanoparticle hybrids appear to be good candidates to next-generation, low-cost, and efficient solar energy applications.
References
-[1] P. Jain, R.S. Rajput, S. Kumar, A. Sharma, A. Jain, B.J. Bora, ACS Omega 11 (2024) 12403.
-[2] J. Wang, X. Mu, M. Sun, Nanomaterials 9 (2019) 218.
-[3] P.J. Zhu, Y.N. Yan, Y. Zhou, Z.J. Qi, Y.F. Li, C.M. Chen, ACS Appl. Nano Mater. 7 (2024) 8445.
-[4] T.A. Amollo, Heliyon 10 (2024) e26401.
-[5] C. Anichini, P. Samorì, Small 17 (2021) 2100514.
-[6] Z. Niazi, A. Hagfeldt, E.K. Goharshadi, J. Mater. Chem. A 11 (2023) 6659.
-[7] E.T. Mombeshora, E. Muchuweni, R. Garcia-Rodriguez, M.L. Davies, V.O. Nyamori, B.S. Martincigh, Nanoscale Adv. 4 (2022) 2057.
-[8] L.T. Siow, J.R. Lee, E.H. Ooi, E.V. Lau, Renew. Sustain. Energy Rev. 193 (2024) 114288.
-[9] P. Kanti, K.V. Sharma, R.S. Khedkar, T.U. Rehman, Diam. Relat. Mater. 128 (2022) 109265.
-[10] J. Qu, R. Zhang, L. Shang, Z. Wang, Int. J. Energy Res. 44 (2020) 7216.
-[11] S.C. Kim, G. Poongavanam, S. Duraisamy, S. Parasuraman, M. Megaraj, Environ. Sci. Pollut. Res. 29 (2022) 8731.
-[12] Aslfattahi, N., Saidur, R., Arifutzzaman, A., Abdelrazik, A. S., Samylingam, L., Sabri, M. F. M., & Sidik, N. A. C., J. Therm. Anal. Calorim. 147 (2022) 1125–1142.
-[13] Z. Ali, S. Yaqoob, J. Yu, A. D’Amore, M. Fakhar-e-Alam, J. King Saud Univ. Sci. 36 (2024) 103457.
-[14] A. Bafti, V. Mandić, I. Panžić, L. Pavić, V. Špada, ACS Nano 14 (2020) [pages pending].
-[15] T. Venkatesh, S. Manikandan, C. Selvam, S. Harish, Int. Commun. Heat Mass Transf. 130 (2022) 105794.
-[16] H.G. Abdulzahraa, M.K.A. Mohammed, A.S.M. Raoof, Surf. Interfaces 31 (2022) 102092.
-[17] B.K. Mohammed, M.K.A. Mohammed, D.S. Ahmed, Mater. Today Energy 22 (2021) 100853.
-[18] A.T. Al-Douri, R. Gdoura, Y. Al-Douri, A. Bouhemadou, A.F. Abd El-Rehim, J. Mater. Res. Technol. 15 (2021) 1487.
-[19] Z. Barani, A. Mohammadzadeh, C.Y.T. Huang, L. Mangolini, F. Kargar, A.A. Balandin, arXiv preprint (2019).
-[20] J.S. Lewis, Z. Barani, A. Sanchez Magana, F. Kargar, A.A. Balandin, arXiv preprint (2019).
-[21] M.A.I. Rashed Al Mizan, M.A. Islam, Mater. Chem. Phys. 257 (2021) 123809.
-[22] A. Nouri-Borujerdi, S. Kazemi-Ranjbar, Therm. Sci. Eng. Prog. 25 (2021) 100964.
-[23] S.S. Safa, A.T. Al-Douri, A.A. Hadi, S.J.M. Alnajm, Exp. Theor. Nanotechnology. 9 (2025) 361.
-[24] S. Aftab, M.Z. Iqbal, S. Hussain, H.H. Hegazy, M.A. Saeed, Nano Energy 108 (2023) 108249.
-[25] P.K. Kanti, P. Sharma, M.P. Maiya, K.V. Sharma, Sol. Energy Mater. Sol. Cells 253 (2023) 112207.
-[26] T.A. Amollo, Heliyon 10 (2024) [Article].
-[27] Zhang, J.Y., Wu, X.B., & Shi, J.J., Phys. Chem. Chem. Phys. 26 (2024) 29584–29594.
-[28] C.R. Chen, C. Chen, P.H. Cheng, W.H. Shi, T.P. Teng, Case Stud. Therm. Eng. 28 (2021) 101591.
-[29] C. Liu, P. Lu, W. Chen, Y. Zhao, Y. Chen, Phys. Chem. Chem. Phys. 23 (2021) 26030.
-[30] Y. Zhou, W. Qian, W. Huang, B. Liu, H. Lin, C. Dong, Nanomaterials 9 (2019) 1450. 2
-[31] Maksood Adil Mahmoud Al-Doori1, Asaad T. Al-Douri1, Nahedh Ayad Faris. Exp. Theo. NANOTECHNOLOGY 9 (2025) 503
-[32] Ahmed Suhail Hussein,Noor Khalid Ismael, Asaad T. Al-Douri, Abbas Saeb Zaham, Ali Y.Alwan1, Mais Qasem Mohammed, Sama Amer Abbas El-Tekreti, Shaimaa Tarik Mahmood, Saeb Jasim Mohammed Alnajm,Younis W. Younis, Maksood Adil Mahmoud Al-Doori. Exp. Theo. NANOTECHNOLOGY 9 (2025) 512
-[33] Safa Salah Salman, Asaad T. Al-Douri, Albosale Abbas Hadi,Saeb Jasim Mohammed Alnajm. Exp. Theo. NANOTECHNOLOGY 9 (2025) 372