Temperature-programmed desorption analysis for aminofunctionalized zeolite nanomaterials
DOI:
https://doi.org/10.56053/9.4.539Keywords:
Temperature-Programmed Desorption, Zeolite, Adsorption, CO2Abstract
In this study, Zeolite nanomaterial has been functionalized with amino functional groups using APTES (3-aminopropyltriethoxysilane) solution with 20%, 40%, 60% and 80% wt. The prepared amine zeolite has been investigated for its ability to adsorb carbon dioxide gas molecules using Temperature Programmed Desorption (TPD). Furthermore, the results of the TPD characterization show that zeolite with 60%wt APTES has a high adsorption capacity of CO2 with more than 4000 µmole/g compared with other APTES concentration where the 60%wt improved the adsorption capacity four-fold. The effective improvement in CO2 adsorption performance by amine-modified zeolite is attributed to the APTES modification reaction, which introduces additional functional groups onto the zeolite surface, thus, increasing the number of active sites available for CO2 adsorption. The TDP results show that zeolite is a promising material for CO2 adsorption. Additionally, the zeolite functionalized with 60% amino functional groups is characterized by FTIR, XRD, FESEM, EDX, XPS, and TGA.
References
-[1] Z. Liu, J. Zhu, C. Peng, T. Wakihara, T. Okubo, Reaction Chemistry & Engineering 4 (2019) 1699
-[2] J. Park, H. Tabata, ACS Omega 6 (2021) 21284
-[3] M. Shamzhy, M. Opanasenko, P. Concepcion, A. Martınez, Chemical Society Reviews 48 (2019) 1095
-[4] S. Lee, B. Kim, J. Kim, Journal of Materials Chemistry A 7 (2019) 2709
-[5] N. Kosinov, J. Gascon, F. Kapteijn, E.J. Hensen, Journal of Membrane Science 499 (2016) 65
-[6] Y. Hyeon, J. Lee, H. Qutaish, S.A. Han, S.H. Choi, S.W. Moon, M.-S. Park, D. Whang, J.H. Kim, Energy Storage Materials 33 (2020) 95
-[7] V. Aggarwal, S. Solanki, B.D. Malhotra, Chemical Science 66 (2022) 99
-[8] C.-H. Huang, C.-S. Tan, Aerosol and Air Quality Research 14 (2014) 480
-[9] S.A. Alnuaimi, D. Vaishnavi, H.G. Hameed, Experimental and Theoretical NANOTECHNOLOGY 9 (2025) 513
-[10] M. Anwar, M. Iftikhar, B. Khush Bakhat, N. Sohail, M. Baqar, A. Yasir, Sustainable Agriculture Reviews 37 (2020) 13
-[11] M. Filonchyk, M.P. Peterson, H. Yan, A. Gusev, L. Zhang, Y. He, S. Yang, Science of the Total Environment 944 (2024) 173895
-[12] W. Ye, W. Liang, Q. Luo, X. Liang, C. Chen, Industrial & Engineering Chemistry Research 64 (2025) 4148
-[13] C.M. Mfoumou, F. Ngoye, P. Tonda-Mikiela, F.E. Evoung, L.B. Bi-Ndong, T. Belin, S. Mignard, Journal of Environmental Protection 14 (2023) 66
-[14] M. Suba, O. Verdes, S. Borcanescu, A. Popa, Molecules 29 (2024) 3172
-[15] N. Shezad, M. Safdar, H. Arellano-Garcıa, C.-W. Tai, S. Chen, D.-K. Seo, S. You, A. Vomiero, F. Akhtar, Carbon Capture Science & Technology 15 (2025) 100424
-[16] D. Madden, T. Curtin, Microporous and Mesoporous Materials 228 (2016) 310
-[17] A.A. Dabbawala, I. Ismail, B.V. Vaithilingam, K. Polychronopoulou, G. Singaravel, S. Morin, M. Berthod, Y. Al Wahedi, Microporous and Mesoporous Materials 303 (2020) 110261
-[18] J.M. Crawford, M.J. Rasmussen, W.W. McNeary, S. Halingstad, S.C. Hayden, N.S. Dutta, S.H. Pang, M.M. Yung, ACS Catalysis 14 (2024) 8541
-[19] H.N. Abdelhamid, Applied Organometallic Chemistry 36 (2022) 6753
-[20] T. Derbe, S. Temesgen, M. Bitew, Advances in Materials Science and Engineering 2021 (2021) 6637898
-[21] M. Gupta, H.F. Hawari, P. Kumar, Z.A. Burhanudin, N. Tansu, Nanomaterials 11 (2021) 623
-[22] Z. Huang, J.-F. Su, Y.-H. Guo, X.-Q. Su, L.-J. Teng, Chemical Engineering Communications 196 (2009) 969
-[23] A. Iqbal, H. Sattar, R. Haider, S. Munir, Journal of Cleaner Production 219 (2019) 258
-[24] M.J.-L. Mukaba, A.E. Ameh, C.P. Eze, L.F. Petrik, Environ. Eng. Manag. J 19 (2019) 475
-[25] R.P. Ningtyas, G. Murdikaningrum, J.M. Hutagalung, S. Kong, CHEMICA: Jurnal Teknik Kimia 11 (2024) 33
-[26] S. Soltani, A. Zamaniyan, J.T. Darian, S. Soltanali, RSC Advances 14 (2024) 5380
-[27] S. Eren, F.N. Turk, H. Arslanoglu, Environmental Science and Pollution Research 31 (2024) 41791
-[28] W.J. Roth, M. Opanasenko, M. Mazur, B. Gil, J. Cejka, T. Sasaki, Advanced Materials 36 (2024) 2307341
-[29] V. Viriya, T.L. Chew, Q.H. Ng, C.-D. Ho, Z.A. Jawad, Results in Engineering 24 (2024)
-[30] N.B.T. Tran, N.B. Duong, N.L. Le, Journal of Chemistry 2021 (2021) 6678588
-[31] D.C. Son, V.T.K. Anh, N.T. Thom, H.L.T. Nguyen, L.V. Hai, C.T. Thien, N.T. Hoang, T.D. Lam, P.T. Nam, N.T.T. Trang, Vietnam Journal of Chemistry 61 (2023) 170
-[32] S.R. Bare, A. Knop-Gericke, D. Teschner, M. Havacker, R. Blume, T. Rocha, R. Schlogl, A.S. Chan, N. Blackwell, M. Charochak, Surface Science 648 (2016) 376
-[33] P. Emayavaramban, K. Kadirvelu, N. Dharmaraj, Journal of Nanoscience and Nanotechnology 16 (2016) 9093