Microplastic removal via physical and chemical methods

Authors

  • L. Feo Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy Author
  • R. Pullar Department of Engineering of Materials and Ceramics/CICECO – Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal Author
  • A. Zaoui Polytech’Lille, Université de Lille 1 Sciences et Technologies. Cité Scientifique. Avenue Paul Langevin, 59655, Villeneuve D’Ascq Cedex, France Author

DOI:

https://doi.org/10.56053/7.1.1

Keywords:

Microplastics, Physical, Chemical

Abstract

A growing number of synthetic plastics derived from fossil fuels are produced, and improper plastic waste management has caused a lot of pollution problems. There are many microplastics in the environment, and they disintegrate slowly in soil and water. The properties of microplastics include long residence times, high stability, high fragmentation potential, and the ability to adsorb other contaminants. Invertebrates and planktonic organisms are easily able to accumulate microplastics in aquatic species. Therefore, microplastics (MPs) must be removed from the water and other media. This paper aims to review the occurrence, raw polymers and additives, and remediation methods for removing microplastics from the environment. Several methods are available for removing contaminants, including sorption, filtration, and chemical treatments. Various removal methods are discussed along with their methods, efficiency, and advantages.

References

-[1] M. Padervand, E. Lichtfouse, D. Robert, C. Wang, Environ. Chem. Lett. 18 (2020) 807

-[2] A. E. Al-Rawajfeh, E. M. AlShamaileh, and M. R. Alrbaihat, J. Ind. Eng. Chem. 73 (2019) 336

-[3] A. Kumar and R. Yedhu Krishnan, Int. J. Chem. Tech. Res. 13 (2020)

-[4] A. Esnouf, É. Latreille, J. P. Steyer, and A. Helias, Sci. Total Environ. 621 (2018) 1264

-[5] L. Van Cauwenberghe, A. Vanreusel, J. Mees, C. R. Janssen, Environ. Pollut. 182 (2013) 495

-[6] H. Hirai et al., Mar. Pollut. Bull. 62 (2011) 1683

-[7] F. Faure, C. Demars, O. Wieser, M. Kunz, L. F. de Alencastro, Environ. Chem. 12 (2015) 582

-[8] K. L. Law et al., Environ. Sci. Technol. 48 (2014) 4732

-[9] M. Antoine, H. Herman, Exp. Theo. NANOTECHNOLOGY 4 (2020) 1

-[10] K. -O. Ong, J. Cheong, -F.Heong, Exp. Theo. NANOTECHNOLOGY 4 (2020) 11

-[11] Farhan A. Khammas, Abdul Rahman Najem Abed, Exp. Theo. NANOTECHNOLOGY 4 (2020) 21

-[12] J. Li, H. Liu, J. Paul Chen, Water Res. 137 (2018) 362

-[13] R. Sussarellu et al., Proc. Natl. Acad. Sci. U.S.A. 113 (2016) 2430

-[14] J. D. Meeker, S. Sathyanarayana, S. H. Swan, Philos. Trans. R. Soc. B Biol. Sci. 364 (2009) 1526

-[15] Abbas M. Selman, Exp. Theo. NANOTECHNOLOGY 4 (2020) 29

-[16] Liqaa H. Alwaan, Layla A. Jubur, Doaa A. Hussein, Exp. Theo. NANOTECHNOLOGY 4 (2020) 37

-[17] O.-W. Lau, S.-K. Wong, J. Chromatogr A 882 (2000) 255

-[18] C. R. Nobre et al. Mar. Pollut. Bull. 92 (2015) 99

-[19] W. Wang, A. W. Ndungu, Z. Li, J. Wang, Sci. Total Environ. 575 (2017) 1369

-[20] P. Schwabl et al., Ann. Intern. Med. 171 (2019) 453

-[21] Halima Mazari, Kheira Ameur, Aicha Boumesjed, Reski Khelifi, Sedik Mansouri, Nadia Benseddik, Nawal Benyahya, Zineb Benamara, Jean-Marie Bluet, Exp. Theo. NANOTECHNOLOGY 4 (2020) 49

-[22] Z. James, Curr. Biol. 27 (2017) R713

-[23] C. Zhang, X. Chen, J. Wang, L. Tan, Environ. Pollut. 220 (2017) 1282

-[24] S. Y. Au, T. F. Bruce, W. C. Bridges, S. J. Klaine, Environ. Toxicol. Chem. 34 (2015) 2564

-[25] I. V Kirstein et al., Mar. Environ. Res. 120 (2016) 1

-[26] J. C. Prata, Environ. Pollut. 234 (2018) 115

-[27] J. Q. Jiang, Sustain. Prod. Consum. 13 (2018) 16

-[28] Bassam Ramadhn Sarheed, Muhammed Abdul gafor, Mustafa. R. Al-Shaheen, Mohammed R. Alshaheen, Exp. Theo. NANOTECHNOLOGY 4 (2020) 59

-[29] S. Adam, Environ. Sci. Technol. 48 (2014) 12336

-[30] E. Fasano, F. Bono-Blay, T. Cirillo, P. Montuori, S. Lacorte, Food Control 27 (2012) 132

-[31] C. E. Talsness, A. J. M. Andrade, S. N. Kuriyama, J. A. Taylor, F. S. V. Saal, Philos. Trans. R. Soc. B Biol. Sci. 364 (2009) 1526

-[32] S. L. Wright and F. J. Kelly, Environ. Sci. Technol. 51 (2017) 6634

-[33] A. H. Hamidian, E. J. Ozumchelouei, F. Feizi, C. Wu, Y. Zhang, M. Yang, J. Clean. Prod. 295 (2021) 126480

-[34] M. Eriksen et al., PLOS One 9 (2014) 1

-[35] R. C. Thompson, C. J. Moore, F. S. V. Saal, S. H. Swan, Philos. Trans. R. Soc. B Biol. Sci. 364 (2009) 2153

-[36] M. A. Browne et al., Environ. Sci. Technol. 45 (2011) 9175

-[37] Z. Long et al., Water Res. 155 (2019) 255

-[38] F. Murphy, C. Ewins, F. Carbonnier, B. Quinn, Environ. Sci. Technol. 50 (2016) 5800

-[39] L. Jin, G. Zhang, H. Tian, Water Res. 66 (2014) 85

-[40] J. Sun, X. Dai, Q. Wang, M. C. M. van Loosdrecht, B. J. Ni, Water Res. 152 (2019) 21

-[41] S. A. Carr, J. Liu, A. G. Tesoro, Water Res. 91 (2016) 174

Downloads

Published

2024-08-03

Issue

Section

Articles

How to Cite

Microplastic removal via physical and chemical methods . (2024). Experimental and Theoretical NANOTECHNOLOGY, 7(1), 1-16. https://doi.org/10.56053/7.1.1