High performance metal alloys for renewable energy

Authors

  • Björn Reetz Materion Brush GmbH, 70499 Stuttgart, Germany Author
  • Andreas Frehn Materion Brush GmbH, 70499 Stuttgart, Germany Author
  • Wolfgang Budweiser Materion Brush GmbH, 70499 Stuttgart, Germany Author
  • William Bishop Materion Corporation, 6070 Mayfield Heights, USA Author

DOI:

https://doi.org/10.56053/9.3.465

Keywords:

Renewable energy, Batteries, Hydrogen, Metals

Abstract

Renewable energy encompasses a wide range of technologies, each requiring specialized materials. Understanding these materials and their applications is crucial to determine the necessary properties and how to characterize them to prove their utility. This work is twofold: it begins with an introduction to the renewable energy sectors, general requirements, and the materials to be discussed later. The main part outlines the contribution of selected materials, namely copper alloys (CuBe2, Cu15Ni8Sn), beryllium, niobium, tantalum and clad metals, in enabling these technologies. Applications from different energy sectors are considered, with examples ranging from small devices such as bearings, switches, and sensors to key components like bipolar plates in fuel cells. The relevant materials and their properties, which ensure functionality, reliability, and longevity, are presented to demonstrate that high performance
materials are indispensable for the green energy revolution. The performance of the material is thanks to its chemical composition and, in many cases, to tailored nanostructures, such as ultrafine precipitates in case of CuBe2 or chemical segregations at the atomic level in case of Cu15Ni8Sn.

References

-[1] Department of Defence (2001), Renewable Energy

-[2] NREL (2002), R.E.A.C.T. Renewable Energy Activities

-[3] G.H. Brundtland, Our Common Future, UN-Dokument A/42/427 (1987), Chapter 7

-[4] European Commision (2022), EU taxonomy

-[5] S. Kumar et al., Renewable Energy Development, Springer Nature Singapure, 2025

-[6] M. Qiu et al., Bearing Tribology, Springer Berlin Heidelberg, 2016

-[7] D. Bogdanov et al., Nature Communications 45 (2019) 10

-[8] M. Hafner et al., Energy and the Economy in Europe, Palgrave Macmillan, 2022

-[9] O.Vidal et al., Nature Geoscience 6 (2013) 49

-[10] L. Gregoir et al., Metals for Clean Energy, KU Leuven, 2022

-[11] D-eiti (2020), Rohstoffbedarf im Bereich der erneuerbaren Energien

-[12] A. Müller, Miseor, 2018

-[13] T.I. Chardaye et al., Power Shift, Berlin, 2022

-[14] J.A. Pranto et al., Control Systems and Optimization Letters 2 (2024) 3

-[15] A. Cooperman et al., National Renewable Energy Laboratory, Golden, 2023

-[16] L.J. Brillson et al., Advanced Materials for Our Energy Future, 2010

-[17] A. Ozodakhon et al., E3S Web of Conferences 540 (2024) 545

-[18] H. Bolt et al., Herbert Utz Verlag GmbH, 2017

-[19] European Commission (2024), Advanced materials for substitution in the clean energy sector

-[20] H.H. Hausner, Beryllium, University of Califonia Press, 1965

-[21] K.A. Walsh, ASM International, 2009

-[22] Copper Development Association, Beryllium Copper, United Kingdom, 1965

-[23] J. Jürgensen et al., Metals 14 (2024) 588

-[24] A. Frehn et al., COPPER ALLOYS 2024 Proceedings

-[25] J.R. Davis, ASM International, 2000

-[26] W.D. Wilkinson, Gordon and Breach Science Publishers, 1969

-[27] L.A. Gypen et al., Materials and Corrosion 35 (1984) 2

-[28] T.W. Clyne et al., Cambridge University Press, 1993

-[29] B. Reetz, diploma thesis, TU Berlin, 2001

-[30] W. Kollenberg, Vulkan-Verlag GmbH, 2010

-[31] R.A. Beliaev, U.S. Atomic Energy Commission, Division of Technical Information, 1964

-[32] N. M. Slaber, J. S. Kith, Exp. Theo. NANOTECHNOLOGY 9 (2025) 9

-[33] K. Smith et al., Materion Corporation, 2012

-[34] Materion Corporation, C17200 Alloy 25 DSTO Rod and Tube

-[35] Materion Corporation, ToughMet® 3 AT Alloy Rod, Tube & Forged Rings

-[36] Materion Corporation, Alloy 360 Nickel-Beryllium Strip

-[37] Materion Corporation, Niobium C-103 Alloy Bar and Rod Products

-[38] Materion Corporation, ULTRA 76 Plus Alloy

-[39] Materion Corporation, AyontEX Aluminum-Silicon Alloys

-[40] Materion Corporation, Copper-to-aluminum Dovetail Clad Metal

-[41] Materion Corporation, ESTAINLESS MIT KUPFER ODER ALUMINIUM

-[42] Materion Corporation, iON EV™ Clad Connectors

-[43] ASTM, E8 (2016)

-[44] ASTM, E466 (1982)

-[45] ASTM, Annual book of ASTM standards, 2001

-[46] R. Baboian, ASTM International, 2005

-[47] ISO 15156 Technical Corrigenda (2003)

-[48] P.J. Jordaens et al., EWEA, Vienna, 2013

-[49] WINLUB, Abschlussbericht, 2008

-[50] H. Peng et al., Coatings 14 (2024) 30

-[51] I. Jonuschies, Dissertation, Rostock, 2015

-[52] T. Hagemann et al., Lubricants 9 (2021) 97

-[53] T. Liskiewicz et al., Elsevier Science, 2022

-[54] D. Knabner et al., International Journal of Fatigue 182 (2024) 67

-[55] I. Hutchings et al., Elsevier Science, 2017

-[56] R. Bender et al., Materials and Corrosion, 2022

-[57] S. Musabikha et al., International Journal of Environmental Research & Clean Energy 7 (2017) 1

-[58] A. Allah et al., INTERNATIONAL JOURNAL of SMART GRID 2 (2018) 4

-[59] A. Want et al., Biofouling, 2021

-[60] Materion Corporation, A Guide to Galvanic Corrosion of Copper Beryllium and ToughMet®

-[61] Badis Bendjemil, Maram Mechi, Khaoula Safi, Mounir Ferhi, Karima Horchani Naifer, Exp. Theo.

-[62] NANOTECHNOLOGY 8 (2024) 51

-[63] R. Legarski, SolveForce, 2024

-[64] B. Sorensen et al., Elsevier Science, 2018

-[65] R. Korthauer, Springer Berlin Heidelberg, 2013

-[66] L. Chen et al., ECS Transactions 5 (2007) 1

-[67] R. Deng et al., Energies 16 (2023) 99

-[68] D. Linden et al., McGraw-Hill, 2002

-[69] A.M. Hermann et al., International Journal of Hydrogen Energy 30 (2005) 77

-[70] R. Wlodarczyk et al., Corrosion Resistance, IntechOpen, 2012

-[71] R.S. Singh et al., Front. Mater. Sci. 13 (2019) 3

-[72] I.H. Anapi et al., Journal of Environmental Chemical Engineering 12 (2024) 5

-[73] -[72] K.S. Weil et al., Development of Low-Cost, Clad Metal Bipolar Plates for PEM Fuel Cells

-[74] M. Pohl, Practic. Metallogr. 51 (2014) 4

-[75] M. Yamada et al., Electrochem (2020) 2

-[76] CBMM, Battery Innovation Niobium as a disrupting element, 2019

-[77] -[76] EG&G Technical Services, Fuel Cell Handbook, U.S. DoE, 2004

-[78] S. Lv et al., Energies 15 (2021) 1

-[79] P. Lewis et al., Crystals 14 (2024) 5

-[80] K.U. Kainer, Wiley, 2003

-[81] C.M. Braams et al., IOP Publishing Ltd., UK, 2002

-[82] M. Claessens, ITER: The Giant Fusion Reactor, 2003

-[83] V. Barabash et al., 12th Int. Conf. on Fusion Reactor Materials, Santa barbara, United States, 2005

-[84] R. Raffray et al., IEEE 24th Symposium on Fusion Engineering, Chicago, United States, 2011

-[85] A. M. Ahmed Alwaise, Raqeeb H. Rajab, Adel A. Mahmood, Mohammed A. Alreshedi, Exp. Theo. NANOTECHNOLOGY 8 (2024) 67

-[86] T. Stokes et al., Fusion Science and Technology 80 (2024)

-[87] Materion Corporation, Materion and Kairos Power to Advance Clean Energy

-[88] P.T. Mosely et al., IOP Publishing Ltd, UK, 1996

Downloads

Published

2025-07-15

Issue

Section

Articles

How to Cite

High performance metal alloys for renewable energy. (2025). Experimental and Theoretical NANOTECHNOLOGY, 9(3), 465-488. https://doi.org/10.56053/9.3.465