Enhancing the anticorrosion of graphene/epoxy nanocomposites with ZrO2 nanoparticles
DOI:
https://doi.org/10.56053/Keywords:
Epoxy, AFM, ZrO2, SEM, GrapheneAbstract
The corrosion of metallic equipment and the degradation of plastic materials pose significant concerns for companies and national economies. These issues must be addressed by researching and implementing creative procedures and techniques. A practical solution can be found by developing materials that can withstand corrosive conditions and can be applied as protective coatings to hinder or, at the very least, slow down the degradation process. This work synthesized and applied nanocomposite coatings of graphene/zirconia dioxide (ZrO2)/epoxy to protect oil pipelines from corrosion. The graphene/ ZrO2/epoxy hybrid is synthesized using mechanical stirring and ultrasonication. The main characteristics are confirmed by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and absorbance analysis. The ability of graphene/ZrO2 to protect epoxy from corrosion is studied at temperatures ranging from 298 to 318 K. The effectiveness of these coatings in preventing corrosion on the surface is investigated by measuring the corrosion potential (ECorr) and the corrosion current (ICorr) using a potentiostat. Investigations revealed that the corrosion protective properties are significantly enhanced by adding graphene/ZrO2 to epoxy. The enhancement is attributed to the sheet-like structure,
uniform dispersion, and graphene/ ZrO2 hybrid exfoliation within the epoxy matrix, which effectively prevents the underlying metal substrate from being corroded.
References
-[1] M.M.Y. Zaghloul, M.F., Prog. Adhes. Adhes. 34 (2023) 3438
-[2] R. Randis, D.B. Darmadi, F. Gapsari, A.A. Sonief, E.D. Akpan, E.E. Ebenso, J. Mol. Liq. 390 (2023)
-[3] Issa, T.T., Hasan, J.M., Abdullah, E.T., Shokr, F.S. AIP Conference Proceedings, 2016, 1727, 020012
-[4] L.T. Nhiem, D.T.Y. Oanh, N.H. Hieu, Vietnam J. Chem. 61 (2023) 284
-[5] S. Kopsidas, G.B. Olowojoba, A.J. Kinloch, A.C. Taylor, Int. J. Adhes. Adhes. 104 (2021) 102723.
-[6] E. T. Abdullah, and Omar A. Ibrahim, 62 (2021) 1158
-[7] C. Verma, L.O. Olasunkanmi, E.D. Akpan, M.A. Quraishi, O. Dagdag, M. El Gouri, E.M. Sherif,
E.E. Ebenso, React. Funct. Polym. 156 (2020) 104741
-[8] S. Anwar, X. Li, J. Coat. Technol. Res. 21 (2024) 461
-[9] A. Makhmetova, E.S. Negim, D. Ainakulova, G. Yeligbayeva, J. Khatib, Complex Use Miner. Res.
Eng. Technol. 328 (2024) 20
-[10] M. Samardžija, I. Stojanović, M. Vuković Domanovac, V. Alar, Coatings 13 (2023) 1201
-[11 F.H.Mahdi, A.N. Al-Shadeedi, Semiconductors, , 58(2024) 882
-[12] B. Su, Y. Zhang, G. Huang, Z. Wang, R. Liu, E3S Web Conf. 213 (2020) 02021
-[13] X. Lv, X. Li, N. Li, H. Zhang, Y.Z. Zheng, J. Wu, X. Tao, E3S Web Conf. 2020 (2020) 302021
-[14] Maria S. da Dunla, Exp. Theo. NANOTECHNOLOGY 8 (2024) 23
-[15] X.-J. Shen, X.-Q. Pei, S.-Y. Fu, K. Friedrich, Polymer 54 (2013) 1234
-[16] M. Kim, D.Y. Kim, Y. Kang, O.O. Park, RSC Adv. 5 (2015) 3299
-[17] Z.Z. Ali, B.S. Mahdi, A.D. Thamer, Eng. Technol. J. 40 (2022) 1605
-[18] E. R, M.H. Moghim, N. Eqra, Polym. Polym. Compos. 29 (2021) S556
-[19] M. Naeem, H.C. Kuan, A. Michelmore, S. Yu, A.P. Mouritz, S.S. Chelliah, J. Ma, Carbon 177 (2021)
-[20] S. Sagadevan, J. Podder, I. Das, J. Mater. Sci. Mater. Electron. 27 (2016) 5622
-[21] A. Osman, A. Elhakeem, S. Kaytbay, A. Ahmed, Mater. Chem. Phys. 257 (2021) 123809
-[22] X. Wang, X. Qi, Z. Lin, D. Battocchi, Nanomaterials 8 (2018) 1005
-[23] J.M. Parente, R. Simões, P.N.B. Reis, Procedia Struct. Integr. 37 (2022) 820
-[24] J.S. George, P. Vijayan P, J.K. Paduvilan, N. Salim, J. Sunarso, N. Kalarikkal, N. Hameed, S. Thomas, Prog. Org. Coat. 162 (2022) 106571
-[25] Ziyad Khalf Salih, Angham Ayad Kamall-Eldeen, Exp. Theo. NANOTECHNOLOGY 8 (2024) 27
-[26] N.I.C. Berhanuddin, I. Zaman, S.A.M. Rozlan, M.A.A. Karim, B. Manshoor, A. Khalid, S.W. Chan,
Q. Meng, IOP Conf. Ser.: J. Phys. Conf. Ser. 914 (2017) 012036
-[27] Z. A. Hussain and K. A. Saleh, IJP 22 (2024) 90