Structural and optical investigations of SnO2 nanowires
DOI:
https://doi.org/10.56053/9.2.347Keywords:
SnO2, Nanowires, Spray pyrolysisAbstract
In this study, the SnO2 nanowires and Sb nanoparticles were synthesized using SnCl4.5H2O and SbCl3 by dissolving them in acetone. The solution was sprayed on a glass substrate via spray pyrolysis route. XRD patterns confirm a polycrystalline film with a tetragonal system. The FESEM analysis of morphology clarified a nanowire structure of SnO2 and nanoparticles structure of Sb. EDX proves that when Sb concentration increase, the SnO2 weight decrease from 72% to 68%. The optical properties have been well investigated by UV-VIS spectrophotometer, from this analysis, it can be observed that the absorbance, reflection, and extinction coefficient increased with the increasing of Sb content. The energy bandgap and refractive index elucidated a reduction with the augmentation of Sb content from 3.92 to 3.8 eV and from 2.24 to 2.22, respectively. The obtained characteristics make these films more suitable for nanoelectronics devices, this is due to their tunable controlling by their amount, and their nanostructures of nanoparticles stick on nanowires which render them more effective for the sensing devices.
References
-[1] Habubi, N. F., Ismail, R. A., Hamoudi, W. K., & Abid, H. R. Surface Review and Letters 22 (2015) 1550027
-[2] Uysal, B. Ö., & Arıer, Ü. Ö. A. Applied Surface Science 350 (2015) 74
-[3] Degler, D., Barz, N., Dettinger, U., Peisert, H., Chasse, T., Weimar, U., Barsan, N. Sensors and Actuators B: Chemical 224 (2016) 256
-[4] Mohamed, S. H. Journal of Alloys and Compounds 510 (2012) 119
-[5] Yu, S., Li, L., Xu, D., Dong, H., & Jin, Y. Thin Solid Films 562 (2014) 501
-[6] Bhardwaj, N., Kuriakose, S., & Mohapatra, S. Journal of Alloys and Compounds 592 (2014) 238
-[7] Hussain, N., Zulfiqar, S., Khan, T., Khan, R., Khattak, S. A., Ali, S., & Khan, G. Materials Chemistry and Physics 241 (2020) 122382
-[8] Kim, Y. S., Yu, B. K., Kim, D. Y., & Kim, W. B. Solar Energy Materials and Solar Cells 95 (2011) 2874
-[9] Hsu, C. L., Chen, K. C., & Hsueh, T. J. IEEE Transactions on Electron Devices 61 (2014) 1347
-[10] Mahapatra, A. D., & Basak, D. Sensors and Actuators A: Physical 312 (2020) 112168
-[11] Feng, H. T., Zhuo, R. F., Chen, J. T., Yan, D., Feng, J. J., Li, H. J. Physica E: Lowdimensional Systems and Nanostructures 41 (2009) 1640
-[12] Fauzia, V., Yusnidar, M. N., Lalasari, L. H., Subhan, A. Journal of Alloys and Compounds 720 (2017) 79
-[13] Yang, W., Yu, S., Zhang, Y., & Zhang, W. Thin Solid Films 542 (2013) 285
-[14] Deng, H., Kong, J., & Yang, P. Journal of Materials Science 20 (2009) 1078
-[15] Gürakar, S., & Serin, T. Materials Research Express 6 (2019) 086423
-[16] A. M. Alwan, A. A. Yousif, and H. R. Abed, AIP Conference Proceedings 2190 (2019) 20086
-[17] Alwan, A. M., Yousif, A. A., & Wali, L. A. Plasmonics 13 (2018) 1191
-[18] Abed, H. R., Alwan, A. M., Yousif, A. A., & Habubi, N. F. Optical and Quantum Electronics 51 (2019) 333
-[19] W. Antoine, K. Kennedy, Exp. Theo. NANOTECHNOLOGY 7 (2023) 131
-[20] Sun, M., Liu, J., & Dong, B. Current Applied Physics 20 (2020) 462
-[21] Chen, A., Xia, S., Ji, Z., Xi, J., Qin, H., & Mao, Q, Surface and Coatings Technology 322 (2017) 120
-[22] Singh, M., Goyal, M., & Devlal, K. Journal of Taibah University for Science 12 (2018) 470
-[23] Liu, S., Ding, W., Gu, Y., & Chai, W. Physica Scripta 85 (2012) 065601
-[24] Ramarajan, R., Kovendhan, M., Thangaraju, K., Joseph, D. P., & Babu, R. R. Applied Surface Science 487 (2019) 1385
-[25] Liu, W. W., Liu, C. L., Chen, X. B., Lu, J. H., Chen, H. X., & Miao, Z. Z. Physics Letters A 384 (2020) 126172
-[26] Elangovan, E., & Ramamurthi, K. Journal of Experimental and Industrial Crystallography 38 (2003) 779
-[27] Mazloom, J., Ghodsi, F. E., & Gholami, M. Journal of Alloys and Compounds 579 (2013) 384
-[28] Caglar, Y. Journal of Alloys and Compounds 560 (2013) 181
-[29] Muhammad Ismail, Wang Xiangke, Ali H. Reshak, Dania Ali, Aneeba Amjad, Qaisar Khan, Muhammad Ishaq, Abdul Ahad Khan, Zeshan Zada, Exp. Theo. NANOTECHNOLOGY 7 (2023) 95
-[30] Abdel-Galil, A., Hussien, M. S., & Yahia, I. S. Superlattices and Microstructures 147 (2020) 106697
-[31] Kate, R. S., Bulakhe, S. C., & Deokate, R. J. Optical and Quantum Electronics 51 (2019) 319
-[32] Okbi, F., Lakel, S., Benramache, S., & Almi, K. Semiconductors 54 (2020) 58
-[33] Yadav, A. A., Pawar, S. C., Patil, D. H., & Ghogare, M. D. Journal of Alloys and Compounds 652 (2015) 145
-[34] J. Radehaus, Exp. Theo. NANOTECHNOLOGY 7 (2023) 143
-[35] Fadavieslam, M. R. Journal of Materials Science 27 (2016) 4943
-[36] Raju, M. J. S., & Bhattacharya, S. S. Materials Today: Proceedings 5 (2018) 10097
-[37] Saeedabad, S. H., Selopal, G. S., Rozati, S. M., Tavakoli, Y., & Sberveglieri, G. Journal of Electronic Materials 47 (2018) 5165