Analysis of bias voltage's effect on triple barrier of gallium nitride/aluminum gallium nitride quantum well
DOI:
https://doi.org/10.56053/9.S.327Keywords:
GaN/AlGaN quantum well, bias voltage, resonant tunneling current densityAbstract
At room temperature, we have simulated resonance tunneling currents in a (GaN/AlX Ga1−XN) quantum well where electrons have a lower energy than the potential of the height barrier (Vb) and we have determined that resonance tunneling current density (J0) is dependent on aluminum mole fractions at (x= 55%, 60%, and 65%) in (AlxGa1-xN) barrier regions for number of barriers (N=3) and the well width equals the barrier width (
References
-[1] A. Bhouri, A. Rached, J.L. Lazzari, J. Phys. D: Appl. Phys. 48 (2015) 385102
J.D. Patil, U.T. Nakate, S.U. Ekar, Y.T. Nakate, Y.B. Khollam, Mater. Sci. Eng. B 286 (2022)
-[3] M. Bai, J. Rorison, Sci. Rep. 13 (2023) 20053
-[4] A. Rached, A. Bhouri, S. Sakr, J.L. Lazzari, H. Belmabrouk, Superlattices Microstruct. 91 (2016)
-[5] R. Dolia, S. Chander, V.S. Vats, P.A. Alvi, Mater. Today Proc. 42 (2021) 1629
-[6] M.M. Singh, M.J. Siddiqui, A. Saxena, Procedia Comput. Sci. 85 (2016) 581
-[7] S.M. Sze, Y. Li, K.K. Ng, Phys. Semicond. Devices, John Wiley & Sons, 2021
-[8] L. Moghaddasi, A.M. Ali, R. Sabet-Dariani, Iran. J. Phys. Res. 4 (2020) 91
-[9] K. Talele, D. Patil, Prog. Electromagn. Res. 81 (2008) 237
-[10] S.B. Seyedein Ardebili, J.S. Kim, J. Ha, T.I. Kang, B. Zeinalvand Farzin, Y. Kim, S.J. Lee,
Energies 16 (2023) 1162
-[11] J.L. Pura, Crystals 13 (2023) 108
-[12] L. Esaki, R. Tsu, IBM J. Res. Dev. 14 (1970) 61
-[13] H.Y. Pan, F.Q. Zhao, Mod. Phys. Lett. B 31 (2017) 1750187
-[14] A.N. Westmeyer, S. Mahajan, K.K. Bajaj, J.Y. Lin, H.X. Jiang, D.D. Koleske, R.T. Senger, J.
Appl. Phys. 99 (2006) 99
-[15] S.A. Almansour, D. Hassen, Optics Photon. J. 5 (2014) 77
-[16] R.A. Al-Wardy, M.C. Abdulrida, I.R. Agool, Al-Mustansiriyah J. Sci. 22 (2011) 63
-[17] C.E. Simion, C.I. Ciucu, Rom. Rep. Phys. 59 (2007) 805-817.
-[18] R. Djelti, Z. Aziz, S. Bentata, A. Besbes, Superlattices Microstruct. 50 (2011) 659
-[19] S.B. Seyedein Ardebili, J.S. Kim, J. Ha, T.I. Kang, B. Zeinalvand Farzin, Y. Kim, S.J. Lee,
Energies 16 (2023) 1162
-[20] S. Mukherjee, R. Karmakar, A. Deyasi, Int. J. Soft Comput. Eng. 1 (2011) 41
-[21] L.A. Yang, Y. Li, Y. Wang, S. Xu, Y. Hao, J. Appl. Phys. 119 (2016) 67
-[22] S. Sakr, E. Warde, M. Tchernycheva, F.H. Julien, J. Appl. Phys. 109 (2011) 39
-[23] M. Boucherit, A. Soltani, M. Rousseau, J.L. Farvacque, J.C. DeJaeger, J. Appl. Phys. 112 (2012)
-[24] D. Li, L. Tang, C. Edmunds, J. Shao, G. Gardner, M.J. Manfra, O. Malis, Appl. Phys. Lett. 100
(2012) 105
-[25] C. Bayram, Z. Vashaei, M. Razeghi, Appl. Phys. Lett. 97 (2010) 107
-[26] P. Relloir, X. Nertou, Exp. Theo. NANOTECHNOLOGY 7 (2023) 111
-[27] W. Antoine, K. Kennedy, Exp. Theo. NANOTECHNOLOGY 7 (2023) 131
-[28] J. Robin, K. Kelvin, Exp. Theo. NANOTECHNOLOGY 7 (2023) 119