Spatial analysis of environmental pollutants distribution for case study Al-Taji region in Baghdad city using remote sensing techniques
DOI:
https://doi.org/10.56053/9.S.311Keywords:
Environment, Pollutions, Spectral, Sustainable, Remote sensingAbstract
In this project, GIS and remote sensing techniques were used to detect soil of Baghdad. The field work is in Al-Taji (2022-2023). An XRF device is used to measure the concentrations of heavy metals in the soil. This study also confirmed that inverse distance weight (IDW) geostatistical methods can quickly estimate the map element distributions used in environmental health risk assessment. Spatial analysis will be done to illustrate the main regions of concentrations distribution for heavy pollutants .The XRF measurements of the minerals showed (Zn, Pb, Sr, Fe, Mn, Ni, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, V, Cu) in Al Taji soil showed that the concentrations of some of these elements exceeded the standard value such as (Na, Ca, Ni, Sr, Cl, S, Zn, Cu,) Using the ASD device, the spectral reflectivity of soil samples is measured in the areas of Taji. It is found that the reflectivity increased in wet areas and decreased in the desert areas with respect to soil. The study is characterized by the presence of two strange elements that studies could not find ten years ago, clarified the presence of the element (Sr), which is close to the properties of nuclear in the soil and the presence of element (V) showed that the conditions experienced by this region, whether military or environmental, are what helped the presence of these elements. A spatial distribution map is drawn for the spread of Minerals in the soil of Al-Taji in Baghdad using the IDW method.
References
-[1] R.Sh. Jaafar, A. Yousif, Z.A. Abdulnabi, A.Z. Alhello, H.T. Al-Saad, Eco. Env. & Cons. 25 (2019) 35
-[2] M.A. Sultan, The 1st International Applied Geological Congress, 2010
-[3] M. B. Musa, S. A. Abdullah Albakri, M. A Sultan, Iraqi Journal of Physics, 23 (2025) 114
-[4] Ghazal Tuhmaz, Exp. Theo. NANOTECHNOLOGY 8 (2024) 33
-[5] M. Tadres, Exp. Theo. NANOTECHNOLOGY 8 (2024) 11
-[6] S.A. Hussain, S.A. Abdullah, A.A. Al Maliki, J. Phys. Conf. Ser. 2114 (2021) 012086
-[7] Z.J. George, E. Changes, Plant Soil 243 (2002) 209
-[8] E.F. Khanger, B.A. Al Razaq, R.R. Ismail, Z.F. Rasheed, IOP Conf. Ser. Mater. Sci. Eng. 757 (2020) 012030
-[9] K.W. Yoo, S.P. Wang, J. Phys. Conf. Ser. IOP Publishing, 2021
-[10] G. Rasool, G. Khattack, J.K. Bhatti, A., Pakistan J. Agric. Res. 8 (1987) 29
-[11] S.K. Al-Mamoori, Basrah J. Eng. Sci. 17 (2017) 48
-[12] J. Ryan, G. Estefan, A. Rashid, Soil and Plant Analysis Laboratory Manual, 1977
-[13] M.H. Nabavi, M. Kashefi, J. Ornamental Hort. Plants 3 (2013) 25
-[14] K.J. Stasicka, Z. Environ. Pollut. 107 (2000) 263
-[15] R.D. Turner, R. Warne, M.S.J. Dawes, L.A. Vardy, S. Will, G.D. J. Environ. Manag. 183 (2016) 806
-[16] B.J. Alloway, Zinc in Soils and Crop Nutrition, 2nd ed., International Zinc Association/International Fertilizer Industry Organization, Brussels/Paris, 2008
-[17] H.M. Rantamaki, S. Puputti, E.M. Tyystjarvi, T. Tyystjarvi, E., J. Exp. Bot. 57 (2006) 1809
-[18] L.K. Zaunbrecher, R.T. Cygan, W.C. Elliott, J. Phys. Chem. A 119 (2015) 5691
-[19] J. Solecki, I.S. Chibowski, Pol. J. Environ. Stud. 11 (2002) 157
-[20] J. Christ, M. Filips, S. Artois, R. Nowak, M. Reed, W. Knoll, Exp. Theo. NANOTECHNOLOGY 7 (2023) 87
-[21] Muhammad Ismail, Wang Xiangke, Ali H. Reshak, Dania Ali, Aneeba Amjad, Qaisar Khan, Muhammad Ishaq, Abdul Ahad Khan, Zeshan Zada, Exp. Theo. NANOTECHNOLOGY 7 (2023) 95