Enhanced switching ratio and subthreshold swing analysis of different gate dielectric materials effect on OFET performance
DOI:
https://doi.org/10.56053/9.S.303Keywords:
Pentacene, OFET, Al2O3, PVAAbstract
Organic field-effect transistors (OFET) have gained significant interest for their potential in low-cost, large-scale, flexible, and printable electronic devices. However, they face numerous significant challenges, such as high operating voltage and leakage current. This study investigates the impact of using high-dielectric constant materials as gate dielectrics on the performance of OFETs. The goal is to improve OFETs by lowering the operating voltages using high gate dielectric organic and inorganic materials. Aluminum dioxide (Al2O3) and polyvinyl alcohol (PVA) were selected as the gate dielectrics due to their favorable properties. MATLAB was used to model and study the electrical characteristics of the device. The device demonstrated typical p-type channel behavior with increasing negative gate bias voltage values. The device shows a clear enhancement using a bilayer of PVA/Al2O3 against the monolayer. The results show that the device saturation regime has a high value of on/off ratio (Ion/Ioff), transconductance (gm), and lower subthreshold swing (SS) of 8.05 x10 2 -3 , 4.19x10 A/V, 1.52. These values indicate that organic materials can potentially produce organic electronic device applications.
References
-[1] B.H. Mohammed, E.T. Abdullah, Iraqi J. Sci. 61 (2020) 1040
-[2] N.M. Jabbar, M.M.-A. Hussein, Iraqi J. Phys. 20 (2022) 109
-[3] A. Nawaz, I.A. Hümmelgen, J. Mater. Sci. Mater. Electron. 30 (2019) 5299
-[4] K. Liu, B. Ouyang, X. Guo, et al., npj Flex Electron. 6 (2022) 1
-[5] G. Horowitz, Adv. Mater. 10 (1998) 365
-[6] G. Horowitz, R. Hajlaoui, R. Bourguiga, M. Hajlaoui, Synth. Met. 101 (1999) 401
-[7] X.-H. Zhang, S.P. Tiwari, S.-J. Kim, B. Kippelen, Appl. Phys. Lett. 95 (2009) 223302
-[8] B.H. Mohammed, E.T. Abdullah, Eng. Technol. J. 18 (2020) 85
-[9] H. Wang, M. Yang, Y. Tong, X. Zhao, Q. Tang, Y. Liu, Org. Electron. 73 (2019) 159
-[10] A. Ko Semen, J. Electron. Mater. 48 (2019) 7819
-[11] C.-L. Fan, H.-Y. Tsao, Y.-S. Shiah, C.-W. Yao, P.-W. Cheng, Polymers 13 (2021) 3941
-[12] A.J. Kadhima, E.T. Abdullah, A.K. Judran, Eng. Technol. J. 39 (2021) 1688
-[13] Y. Wang, X. Huang, T. Li, L. Li, X. Guo, P. Jiang, Chem. Mater. 31 (2019) 2212
-[14] Y. Baek, S. Lim, L.H. Kim, S. Park, S.W. Lee, T.H. Oh, S.H. Kim, C.E. Park, Org. Electron. 28 (2016) 139
-[15] N. Afsharimani, B. Nysten, Bull. Mater. Sci. 42 (2019) 26
-[16] S. Jakher, R. Yadav, Microelectron. Eng. 290 (2024) 112193
-[17] Y. Yang, R.A. Nawrocki, R.M. Voyles, H.H. Zhang, Org. Electron. 88 (2021) 106000
-[18] "Effect of Organic / Inorganic Gate Materials on the Organic Field-Effect Transistors Performance," IJP 21 (2023) 84
-[19] Y. Yang, R.A. Nawrocki, R.M. Voyles, H.H. Zhang, Org. Electron. 88 (2021) 106000
-[20] N.S. Hamzah, E.K. Hassan, Int. J. Nanoscience 22 (2023) 2350028
-[21] U. Farok, Y. Falinie, A. Alias, B. Gosh, I. Saad, A. Mukifza, K. Anuar, in Proc. 2013 1st Int. Conf. Artif. Intell. Mod. Simul. (AIMS), IEEE, (2013) 405
-[22] A. Nawaza, C.d. Cola, I.A. Hümmelgen, Mater. Res. 19 (2016) 1201
-[23] K.N. Subedi, A. Al-Shadeedi, B. Lüssem, Appl. Phys. Lett. 115 (2019) 193301
-[24] S.Y. Yang, N. Zhao, L. Zhang, H.Z. Zhong, R.B. Liu, B.S. Zou, Nanotechnology 23 (2012) 255203
-[25] L.C.X. Shen, Y. Wang, J. Li, Y. Chen, Z. Wang, W. Wang, L. Huang, Front. Mater. 7 (2020) 1
-[26] A. Singh, M.K. Singh, in Proc. IEEE 2020 Int. Conf. Adv. Comput. Commun. Mater. (ICACCM), (2020) 301
-[27] S. Jung, Y. Bonnassieux, G. Horowitz, S. Jung, B. Iñiguez, C.-H. Kim, IEEE J. Electron Devices Soc. 8 (2020) 1404
-[28] N. Hashim Z, T. Abdullah E., "Effect of Organic / Inorganic Gate Materials on the Organic FieldEffect Transistors Performance,"Iraqi J. Phys. 21 (2023) 84
-[29] P-H Fang, P-L Kuo, Y-W Wang, H-L Cheng, W-Y Chou, Polymer 15 (2023) 2421
-[30] S. Yu, X. Wang, C. Cheng, D. Zhang, D. Ji, D. Xia, W. Jiang, W. Li, H. Guan, Z. Fan, W. He, Y. Chang, G. Du, J. Non-Cryst. Solids 354 (2008) 1516
-[31] M. Kitamura, Y. Arakawa, J. Phys.: Condens. Matter 20 (2008) 184011
-[32] N. Akkan, M. Altun, H. Sedef, IEEE Access 7 (2019) 180438
-[33] Y. Guo, J. Deng, J. Niu, C. Duan, S. Long, M. Li, L. Li, Electron. 12 (2023) 1
-[34] P. Kumar, V.N. Mishra, R. Prakash, IEEE Access 11 (2023) 12014
-[35] R.N. Barreto, G. Candiotto, H.J.C. Avila, R.S. Carvalho, A.M. dos Santos, M. Prosa, E. Benvenuti, S. Moschetto, S. Toffanin, R.B. Capaz, M. Muccini, M. Cremona, ACS Appl. Mater. Interfaces 15 (2023) 33809
-[36] R. Nirosha, R. Agarwal, J. Mater. Sci.: Mater. Electron. 34 (2023) 2120
-[37] A. Demir, A. Atahan, S. Bağcı, M. Aslan, M.S. Islam, Philos. Mag. 96 (2016) 274
-[38] B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T.J. Marks, A. Facchetti, Chem. Rev. 118 (2018) 5690
-[39] W.S. AlGhamdi, A. Fakieh, H. Faber, Y-H. Lin, W-Z. Lin, P-Y. Lu, C-H. Liu, K.N. Salama, T.D. Anthopoulos, Appl. Phys. Lett. 121 (2022) 233503
-[40] S. Ruzgar, M. Caglar, Synth. Met. 232 (2017) 46
-[41] A. M. Ahmed Alwaise, Raqeeb H. Rajab, Adel A. Mahmood, Mohammed A. Alreshedi, Exp. Theo. NANOTECHNOLOGY 8 (2024) 67
-[42] Maria S. da Dunla, Exp. Theo. NANOTECHNOLOGY 8 (2024) 23
-[43] Ziyad Khalf Salih, Angham Ayad Kamall-Eldeen, Exp. Theo. NANOTECHNOLOGY 8 (2024) 27