Enhanced optical properties, wettability and antibacterial activity of PVP doped Au for optical applications
DOI:
https://doi.org/10.56053/9.S.287Keywords:
PVP, Optical, Contact angle, Antibacterial activityAbstract
A casting technique is used to create films of polyvinyl pyrrolidone (PVP) that contained different amounts of gold nanoparticles (Au 0.2, 0.4, 0.6, 0.8, and 1%). Fourier transform infrared (FT-IR) and Ultraviolet/Visible (UV/Vis.) including the optical energy gap (Eg). Using a contact angle system, the sessile drop method is utilized to measure the contact angle and antibacterial activity. It is observed in
the UV spectra that a single-bond in the PVP backbone caused an n-π* transition and spectral peak is observed at a wavelength of 531 nm, which is believed to be caused by the surface Plasmon resonance of gold nanoparticles and appear two energy gaps decreased between (2.2-2 ev) and (3.1-2.9 ev) respectively that well-suited for utilization in electrochemical operations, such as polymer electrolytes and optoelectronic devices. The contact angle results showed an increase the contact angle between (43.85º- 55.98º) made this nanocomposite hydrophobic in surface. The antibacterial activity indicated that the inhibition zone measured approximately 12-16 mm and 8-10 mm against Escherichia coli and Staphylococcus aureus, respectively.
References
R. Zein, I. Alghoraibi, C. Soukkarieh, M.T. Ismail, A. Alahmad, Micromachines (Basel), 13 (2022)
M.A. Younus, B.F. Abdallah, Baghdad Sci. J., 21 (2024) 95
Y. Mikami, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Catal. Sci. Technol., 3 (2013) 58
A.A. Mohammed, N.A. Ali, A.Q. Abdullah, S.I. Hussein, A. Hakamy, A.M. Abd-Elnaiem, A.M.A.
Shamekh, J. Mater. Sci. Mater. Electron., 35 (2024) 440
S.I. Hussein, Iraqi J. Sci., 61(6) (2020) 1298
A.M. Abd-Elnaiem, S.I. Hussein, N.A. Ali, A. Hakamy, A.M. Mebed, Polymers, 14 (2022) 4671
K.K. Chawla, Composite Materials: Science and Engineering, Springer, New York, NY, USA,
X. Zhang, L. Wang, E. Levänen, RSC Adv., 3 (2013) 12003
F.J. Kadhum, A.A. Saeed, M.F.H. AL-kadhemy, A.A. Dawood Al-Zuky, A.H. Al-Saleh, Iraqi J.
Sci., 62 (2021) 4232
A.M. Abdelghany, M.I. Youssif, E.M. Abdelrazek, D.S. Rashad, Egypt. J. Chem., 64 (2021) 1187
C. Lee, C.H. Choi, C.J. Kim, Exp. Fluids, 57 (2016) 176
J.A. Sadeq, A.M.A. Majeed, R.K. Hussein, S.F. Bamsaound, Al-Mustansiriyah J. Sci., 34 (2023)
A. Nieto-Argüello, D. Medina-Cruz, Y.S. Pérez-Ramírez, S.A. Pérez-García, Nanomaterials, 12
(2022) 41
I. Fratoddi, Nanomaterials (Basel), 8 (2018) 11
F. Urbach, Phys. Rev., 92 (1953) 1324
K.J. Tahir, R. Al-Yasari, J. Nanostruct., 8 (2018) 359
K.K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A.K. Sharma, V.V.R. Narasimha Rao, Physica
B, 406 (2011) 1706
Y. Hong, Y.M. Huh, D.S. Yoon, J. Yang, J. Nanomater., 2012 (2012) 759830
A.M. Abdelghany, E.M. Abdelrazek, S.I. Badr, M. Abdel-Aziz, M.A. Morsi, J. Saudi Chem.
Soc., 19 (2015) 59
A.M. Abdelghany, E.M. Abdelrazek, S.I. Badr, M.A. Morsi, Mater. Des., 97 (2016) 532
R. Sahnoun, Exp. Theo. NANOTECHNOLOGY 7 (2023) 78
J. Christ, M. Filips, S. Artois, R. Nowak, M. Reed, W. Knoll, Exp. Theo. NANOTECHNOLOGY
(2023) 87
Muhammad Ismail, Wang Xiangke, Ali H. Reshak, Dania Ali, Aneeba Amjad, Qaisar Khan,
Muhammad Ishaq, Abdul Ahad Khan, Zeshan Zada, Exp. Theo. NANOTECHNOLOGY 7 (2023) 95