Antibacterial efficacy of selenium and zinc selenide nanostructured materials produced through laser ablation technique
DOI:
https://doi.org/10.56053/9.S.227Keywords:
ZnSe, Nanoparticles, Laser ablation, AntibacterialAbstract
This study used pulsed laser ablation at 1064nm with a pulse duration of 9ns and an energy of 50mJ to create selenium and zinc selenide nanostructures. The selenium, zinc, and result selenide sheets are immersed in 3mL of deionized water (D.W.). The XRD patterns confirmed that both ZnSe and Se nanostructures are in a cubic structure. The surface morphology is visualized by FE-SEM. The optical behavior of synthesized Se and ZnSe NPs is investigated using a UV-vis spectrophotometer. This study evaluated the antibacterial activity of these NPs against Staphylococcus aureus and Escherichia coli in vitro. Results indicated that the 3mL dose of Se and ZnSe gave E. coli and S. aureus inhibitions by about 28mm and 12mm for Se and by 15mm and 13mm for ZnSe, respectively. In the wake of the growing antibiotic-resistance in most bacteria, the need for new and novel antibacterial agents becomes
imperative for positive public health. Along with the decreasing efficacy of conventional antibiotics, alternative treatments against bacterial infections become needed more than ever. This work involves the synthesis of selenium and zinc selenide nanostructured materials produced via pulsed laser ablation and their related exploration for antibacterial potential to provide the new classes of effective antibacterial agents.
References
-[1] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt: Res. Appl. 30 (2022) 3
-[2] S.L. Shinde, S.T. Gaikwad, S.S. Mali, J. Mater. Sci.: Mater. Electron. 31 (2020) 20377
-[3] P. Wick, P. Manser, S. Limbach, R. Dettlaff-Weglikowska, A. Krumeich, P.M. Roth, W. Stark, M.
Bruinink, Toxicol. Lett. 168 (2007) 121
-[4] X. Wang, S.C. Zhan, D.L. Jiang, Coord. Chem. Rev. 456 (2018) 1
-[5] M.R. Jahan, S. Shafique, A.H. Mir, J. Mol. Struct. 1220 (2020) 128027
-[6] S.M. Bawazeer, A.A. Al-Hajji, S.M. Yassin, J. Mater. Sci.: Mater. Electron. 30 (2019) 2387
-[7] J. Li, W.L. Yang, H. Li, Y.H. Zhang, Y.L. Liu, Mater. Chem. Phys. 128 (2011) 424
-[8] H.J. Hassan, A.K. Abbas, I.M. Ibrahim, AIP Conf Proc. 2834 (2023) 090006
-[9] A.K.M.A. Islam, M.Z. Rashed, S.S. Islam, J. Nanosci. Nanotechnol. 13 (2013) 4126
-[10] S.Y. Huang, Y.L. Liu, W.L. Yang, H. Li, J. Phys. Chem. C 116 (2012) 10589
-[11] M.H. Azarshab, N. Fattahi, M.A. Mahdavian, J. Mater. Sci. 56 (2021) 319
-[12] K.A. Alkhayal, M.A. Al-Rubeaan, M.S. Al-Saadi, Nanotechnol. Rev. 8 (2019) 241
-[13] A.K.M.A. Islam, M.Z. Rashed, S.S. Islam, J. Nanosci. Nanotechnol. 13 (2013) 4385
-[14] S.L. Shinde, S.T. Gaikwad, S.S. Mali, Thin Solid Films 666 (2018) 68
-[15] P. Wick, P. Manser, S. Limbach, R. Dettlaff-Weglikowska, A. Krumeich, P.M. Roth, W. Stark, M. Bruinink, J. Sol-Gel Sci. Technol. 52 (2009) 284
-[16] M.R. Jahan, S. Shafique, A.H. Mir, Chem. Eng. J. 185-186 (2012) 324
-[17] A.K. Gupta, A.A. Al-Hajji, S.M. Yassin, J. Mater. Sci.: Mater. Electron. 28 (2017) 7536
-[18] S.M. Bawazeer, A.A. Al-Hajji, S.M. Yassin, J. Mater. Sci.: Mater. Electron. 29 (2018) 10254
J. Li, W.L. Yang, H. Li, Y.H. Zhang, Y.L. Liu, J. Nanopart. Res. 15 (2013) 1387
-[20] X. Wang, S.C. Zhan, D.L. Jiang, Appl. Surf. Sci. 421 (2017) 591
-[21] X. Wang, S.C. Zhan, D.L. Jiang, Prog. Mater. Sci. 88 (2017) 148
-[22] A.K. Abbas, I.M. Ibrahim, H. Mayah, H.J. Hassan, J. Phys. Conf. Ser. 2114 (2022) 1
-[23] A. Podhorodecki, M.A. Djoumi-Toumi, A.M. Wojciechowski, M. Szymonski, Appl. Phys. A 118 (2015) 1031
-[24] K.S. Song, S.M. Yoon, K.K. Lee, J. Korean Phys. Soc. 65 (2014) 744
-[25] J. Zhang, Y. Yang, Y. Sun, Nanoscale Res. Lett. 14 (2019) 161
-[26] S.Y. Huang, Y.L. Liu, W.L. Yang, H. Li, J. Mater. Sci. 47 (2012) 5631
-[27] M.R. Jahan, S. Shafique, A.H. Mir, J. Nanopart. Res. 16 (2014) 2398
-[28] A.K. Gupta, A.A. Al-Hajji, S.M. Yassin, Nanotechnol. Rev. 7 (2018) 343
-[29] S. Besner, D.B.G. Richter, J. Phys. Chem. C 111 (2007) 7614
-[30] G. Compagnini, O. Puglisi, S. Scalese, J. Appl. Phys. 95 (2004) 2006
-[31] V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11 (2009) 3805
-[32] M.H. Taku, O. Tatsuki, A.G. Rozhin, S.Y. Shigeru, I. Tsuyohito, S.A. Kulinich, Phys. Chem. Chem. Phys. 18 (2016) 23628
-[33] E.Y. Salih, M.F.M. Sabri, S.T. Tan, K. Sulaiman, M.Z. Hussein, S.M. Said, C.C. Yap, J. Nanopart. Res. 21 (2019) 55
-[34] A.M. Baranov, D.K. Bogy, Appl. Phys. A 69 (1999) 367
-[35] R. Kelly, J. Appl. Phys. 78 (1995) 2758
-[36] H.H. Choi, J.H. Sung, S.H. Lee, Thin Solid Films 392 (2001) 151
-[37] S.A. Bello, C.O. Kolawole, Nanoscale Res. Lett. 6 (2011) 446
-[38] P. Zijlstra, J.W.M. Chon, M. Gu, J. Nanomater. (2008) 204830
-[39] I.A. Abdul-Hassan, A.K. Abbas, I.M. Ibrahim, Wuhan Univ. J. Nat. Sci. (2018) 14286
-[40] M. Jayadndran, M.M. Haneefa, V. Balasubrammanian, J. Appl. Pharm. Sci. (2015) 105
-[41] A. M. Ahmed Alwaise, Raqeeb H. Rajab, Adel A. Mahmood, Mohammed A. Alreshedi, Exp. Theo. NANOTECHNOLOGY 8 (2024) 67
-[42] Maria S. da Dunla, Exp. Theo. NANOTECHNOLOGY 8 (2024) 23
-[43] Ziyad Khalf Salih, Angham Ayad Kamall-Eldeen, Exp. Theo. NANOTECHNOLOGY 8 (2024) 27