Antimicrobial activity of chitosan against biofilm formation of klebsiella pneumonia and staphylococcus aureus associated with burn infections
DOI:
https://doi.org/10.56053/9.S.179Keywords:
Antimicrobial activity, Chitosan, Biofilm formation, Klebsiella pneumoniaAbstract
The effect of chitosan on the biofilm-forming capacity of clinically isolated bacteria was investigated in this study. Chitosan (Biopolymer from Chitin) was made through a series of tests. Patients at Baghdad Medical City Hospital provided 133 clinically burn swap samples. According to the Vitik 2 test, Staphylococcus aureus was detected in 19 of them and Klebsiella pneumonia in 70 of them. Five S. aureus and twenty-five Klebsiella pneumonia were able to generate biofilm when cultivated in microtiter
plates. According to the results, chitosan was more successful at stopping the formation of biofilm at a dosage of 1.6 mg/ml. These results imply that this drug may be used to treat Multidrug resistance bacteria (MDR) in the future.
References
-[1] M.E. Abd El-Hack, M.T. El-Saadony, M.E. Shafi, N.M. Zabermawi, Int. J. Biol. Macromol. 164 (2020) 2726
-[2] F.Z. Aboudamia, M. Kharroubi, M. Neffa, F. Aatab, S. Hanoune, M. Bouchdoug, A. Jaouad, J. Air
Waste Manag. Assoc. 70 (2020) 118
-[3] K. Sauer, et al., Dev. Biofilm (2002) 1140
-[4] S.C. Davis, et al., Wound Repair Regen. 16 (2008) 23
-[5] B. Bendjemil, M. Mechi, K. Safi, M. Ferhi, K. Horchani Naifer, Exp. Theo. NANOTECHNOLOGY
(2024) 51
-[6] A.M.A. Alwaise, R.H. Rajab, A.A. Mahmood, M.A. Alreshedi, Exp. Theo. NANOTECHNOLOGY
(2024) 67
-[7] R.M. Donlan, J.W. Costerton, Clin. Microbiol. Rev. 15 (2002) 167
-[8] E. Garza-Gonzalez, R. Morfin-Otero, M.A. Martinez-Vazquez, E. Gonzalez-Diaz, O. Gonzalez-
Santiago, E. Rodriguez-Noriega, Scand. J. Infect. Dis. 43 (2011) 930 [9] C.-L. Ke, et al., Polymers 13 (2021) 904
-[10] R. Barbour, Sage (2013)
-[11] L.W. Auerbach, S.L. Goodbred Jr., D.R. Mondal, C.A. Wilson, K.R. Ahmed, K. Roy, B.A. Ackerly, Nature Clim. Change 5 (2015) 153
-[12] H. Lade, J.-S. Kim, Antibiotics 10 (2021) 398
-[13] X. Wu, D.A. Al Farraj, J.R. Rajaselvam, R.M. Alkufeidy, P. Vijayaraghavan, N.A. Alkubaisi, P. Agastian, M.K. Alshammari, Saudi J. Biol. Sci. 27 (2020) 2955
-[14] H.H. Liou, M.C. Tsai, C.J. Chen, J.S. Jeng, Y.C. Chang, S.Y. Chen, R.C. Chen, Neurology 48 (1997) 1583
M. Beaney, The Analytic Turn: Analysis in Early Analytic Philosophy and Phenomenology (2007)
-[16] C. Chatterjee, M. Paul, L. Xie, W.A. Van Der Donk, Chem. Rev. 105 (2005) 633
-[17] R.P. Schuenck, S.A. Nouér, C. Winter, et al., J. Antimicrob. Chemother. 74 (2019) 3122 [18] A.S. Shon, R.P.S. Bajwa, T.A. Russo, Virulence 4 (2013) 107
-[19] CLSI, Clin. Lab. Stand. Inst. (2020)
-[20] J.H. Merritt, D.E. Kadouri, G.A. O'Toole, Curr. Protoc. Microbiol. 1B.1.1-1B.1.18 (2005) [21] R.A.A. Muzzarelli, Carbohydr. Polym. 35 (1997) 273
-[22] M.N.V. Ravi Kumar, React. Funct. Polym. 46 (2000) 1