Using mathematical time series models to optimize iraq's oil export predictions
DOI:
https://doi.org/10.56053/9.S.157Keywords:
Exports of Iraqi oil, Forecasting, Monthly oil exports, AutocorrelationAbstract
This study examined and analyzed monthly data on the volume of Iraq's oil exports for the time period (January 2014 to December 2022) using time series models. The prediction values, which revealed that they are reasonably close to the actual series, serve as evidence of the model's correctness. In this paper, we determined from the results of the data analysis in this study that the integrated autoregressive model of the ARIMA moving average (0,1,1) is the best model for representing the data under study after several analysis models are applied to a sample of oil revenues over a nine-year period. The predicted values for the years 2023 and 2024 are then extracted
References
-[1] C. Chatfield, The analysis of time series: theory and practice, Springer, 2013
-[2] G. Kumar, Massachusetts Institute of Technology, 2015
-[3] R. S. Kamal, Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi (DAÜ), 2019
-[4] W. Ying, Bull. Math. Biol. 7 (2009) 1967
-[5] S. M. Awadh, Atmosphere 14 (2023) 180
-[6] N. Bekheet, S. Al-Saad, S. Noori, Int. J. Prof. Bus. Rev. 8 (2023) 71
-[7] T. Joe, N. Abdullah, K. Baharin, Johor, 2021
-[8] M. Hadwan, CMC Comput. Mater. Contin. 70 (2022) 4829
-[9] S. Dhamodharavadhani, R. Rathipriya, Springer, Singapore, 2019
-[10] L. Sinay, E. Kurniwan, IOP Conf. Ser.: Earth Environ. Sci., 2021
-[11] C. Karmaker, P. Hossain, E. Sarkar, J. Ind. Eng. 2017
-[12] Z. Zhang, J. Miao, Elsevier, Boston, (2015) 239
-[13] S. Mahmud, B. Hasan, Environ. Eng. Res. 22 (2017) 162
-[14] Q. Liu, BMC Infect. Dis. 11 (2011) 1
-[15] T. Proietti, H. Lu, Int. J. Forecast. 29 (2013) 88
-[16] B. Zolghadr-Asli, Hydrol. Sci. J. 66 (2021) 1767
-[17] C. Karmaker, P. Hossain, E. Sarkar, J. Ind. Eng. 2017
-[18] N. Ponnamperuma, L. Ranasinghe, IEEE Moratuwa Eng. Res. Conf. (MERCon), 2021
-[20] R. Toorajipour, J. Bus. Res. 122 (2021) 502
-[21] R. Sheah, H. Ali, T. Ahmed, Iraq J. Sci. 106 (2021) 997
-[22] Z. Deng, Adv. Space Res. 63 (2019) 2144
-[23] M.N. Ghayyib, A.I. Fuleih Al-Rubaie, F.A. Adnan, IOP Conf. Ser. Earth Environ. Sci. 1215
(2023) 012039
-[24] I. T. Abbas, M. N. Ghayyib, Iraqi J. Sci., 65 (2024) 7
-[25] Q. Li, Nat. Hazards Res. 1 (2021) 20
-[26] S. Valero, Remote Sens. 8 (2016) 55
-[27] O. Jabber, A. Rashak, Exp. Theo. Nanotechnology 7 (2023) 97
-[28] M. Ashour, IEEE 14th Control Syst. Grad. Res. Coll; 2023
-[29] M.-R. Kazemzadeh, T. A. Kazemzadeh, Energy 204 (2020) 117948
-[30] Q. Wang, Energy 239 (2022) 122280
-[31] S. Stefenon, Electr. Power Syst. Res. 202 (2022) 107584
-[32] H. Lu, M. Lu, Energy 219 (2021) 119568
-[33] Y. Huang, Energy 239 (2022) 122245
-[34] J. Al-Obaidi, Environ. Monit. Assess. 194 (2022) 440
-[35] L. Huebner, SN Appl. Sci. Vol. 4 (2022) 80
-[36] J. Wang, Healthcare Anal 100287 (2023)
-[37] M. Valipour, J. Math. Stat. 8 (2012) 1345
-[38] F. Kaytez, Energy 197 (2020) 117200
-[39] S. Mohanty, R. Das, Prog. Artif. Intell. 11 (2022) 349
-[40] H. Zheng, Y. Zheng, Instrum. Meas. Metrol. 17 (2018) 443
-[41] T. Petukhova, PLOS ONE. 13 (2018) 198313
-[42] M. Yadav, Appl. Acoust. 177 (2021) 107943
-[43] C. Zhang, J. Build. Eng. 37 (2021) 102157
-[44] E. Zhang, Appl. Acoust. 173 (2021) 107705
-[45] E. Rosca, USV Ann. Econ. Public Adm. 10 (2011) 177
-[46] M. Rhif, A review, Appl. Sci. 9 (2019) 1345
-[47] X. Wang, J. Whitaker, Exp. Theo. NANOTECHNOLOGY 7 (2023) 67
-[48] R. Sahnoun, Exp. Theo. NANOTECHNOLOGY 7 (2023) 78