Influence of GO concentration on photoconversion efficiency for dye-sensitized solar cells using GO:TiO2-AD as photoanodes

Authors

  • M. J. AlSultani University of Baghdad, College of Science, Physics Department, Baghdad, Iraq Author
  • M. F. A. Alias University of Baghdad, College of Science, Physics Department, Baghdad, Iraq Author

DOI:

https://doi.org/10.56053/9.S.103

Keywords:

GO:TiO2, Anthocyanin Dye, Hybrid Photoanodes, J-V Characterization

Abstract

Spray pyrolysis is used to make GO:TiO2 hybrid photoanodes immersed in anthocyanin dye extracted from red cabbage using various GO concentrations for dye-sensitized solar cells (DSSC). The effects of GO and anthocyanin dye on structural, morphological, optical, and electrical properties are examined. X-ray diffraction showed GO:TiO2-AD hybrid photoanodes have an anatase phase. Increased GO concentration leads to a reduced crystallite size from 19.84 to 15.04 nm.  Field emission scanning electron microscope (FESEM) and atomic force microscope (AFM) are used to examine photoanodes morphology, grain size, and surface roughness. Due to the GO's 2D structure, adding it to hybrid photoanodes created a continuous TiO2 network. This incorporation reduced grain size from
60.9 to 52.8 nm, increasing surface area and roughness from 16.8 to 41.7 nm. These changes improved photoanodes' dye absorption, light harvesting, and photocurrent density (J). Hall-effect measurements at room temperature showed a significant increase in conductivity and carrier concentration of about one and three orders of magnitude, respectively. The results have indicated that the best GO concentration is 4%. The J-V characterization, short circuit current density, JSC, open circuit voltage, VOC, filling factor, F.F., and PCE of the prepared DSSC have 28.85 mA/cm 2 , 0.52 V, 53.79%, and 6.14% values, respectively. The synthesized GO:TiO2-AD photoanodes are high-quality and suitable for energy conversion devices.

 

References

-[1] N. Armaroli, V. Balzani, Angew. Chem. 46 (2006) 5

-[2] R.D. Costa, D.M. Guldi, Carbon nanomaterials as integrative components in dye-sensitized solar

cells, De Gruyter eBooks (2014) 475

-[3] Y.-C. Wang, C.-P. Cho, J. Photochem. Photobiol. A Chem. 332 (2017) 1

-[4] M. Khannam, S. Sharma, S. Dolui, S.K. Dolui, RSC Adv. 6 (2016) 55406

-[5] A.K. Jeryo, Q.A. Abbas, Iraqi J. Sci. 61 (2020) 2241

-[6] D. Augustine, E.S. Rosa, N. Prastomo, S. Shobih, J. Elektronika Telekomunikasi 20 (2020) 2

-[7] H. Abed, M. Alsultani, M. Abdulsattar, H. Abduljalil, Egypt. J. Chem. 36 (2019) 2009

-[8] A. Al-Shawi, M. Alias, P. Sayers, M.F. Mabrook, Micromachines 10 (2019) 643

-[9] P. Gnida, P. Jarka, P. Chulkin, A. Drygała, M. Libera, T. Tański, E. Schab-Balcerzak, Materials 14

(2021) 1633

-[10] H.A. Hessain, J.J. Hassan, Iraqi J. Sci. 61 (2020) 1313

-[11] A.J.Al-Douri, M.F.A.Alias, M.N.Makadsi, G.H.Mohammed , A.A.Alnajjar, Thin Solid Films, 517

(2008) 881

-[12] M.W. Kazem, R.K. Jamal, Iraqi J. Sci. 62 (2021) 1893

-[13] T.-F. Yi, S.-Y. Yang, Y. Xie, J. Mater. Chem. A 3 (2015) 5750

-[14] G.H. Jetani, M.B. Rahmani, Eur. Phys. J. Plus 135:720 (2020) 1

-[15] H. Hug, M. Bader, P. Mair, T. Glatzel, Appl. Energy 115 (2014) 21

-[16] W. Routray, V. Orsat, Compr. Rev. Food Sci. Food Saf. 10 (2011) 303

-[17] C.-Y. Chien, B.-D. Hsu, Sol. Energy 98 (2013) 203

-[18] S. Junling, Y. Zongyou, Y. Zijiang, A. Pitchamuthu, W. Shixin, Y. Jun, Z. Yang, D. Wei-Qiao, Z.

Hua, Liu, Xue-Wei, Chem. 17 (2011) 10832

-[19] L. Wei, P. Wang, Y. Yang, Z. Zhan, Y. Dong, W. Song, R. Fan, Inorg. Chem. Front. 5 (2018) 54

-[20] S.R. Kim, Md. K. Parvez, M. Chhowalla, Chem. Phys. Lett. 483 (2009) 124

-[21] S. Prabakaran, K.D. Nisha, S. Harish, J. Archana, M. Navaneethan, S. Ponnusamy, C.

Muthamizhchelvan, Y. Hayakawa, Appl. Surf. Sci. 449 (2018) 332

-[22] S. Jamil, M. Fasehullah, Mater. Innov. 1 (2021) 22

-[23] M.K. Ahmad, N.A. Marzuki, C.F. Soon, N. Nafarizal, R. Sanudin, A.B. Suriani, A. Mohamed, M.

Shimomura, K. Murakami, M.H. Mamat, M.F. Malek, AIP Conf. Proc; 2017

-[24] S. Manu, M.A. Khadar, J. Mater. Chem. C 3 (2015) 1846

-[25] B.D. Cullity, Elements of X-Ray Diffraction, Franklin Classics, 2nd ed; 2018

-[26] W. Vallejo, A. Rueda, C. Díaz-Uribe, C. Grande, P. Quintana, R. Soc. Open Sci. 6 (2019) 181824

-[27] A. Aprilia, V. Marcelina, F. Yuliasari, Y.W. Hartarti, Fitrilawati, L. Safriani, R.E. Siregar, Mater.

Sci. Forum 966 (2019) 378

-[28] M.-Y. Yen, M.-C. Hsiao, S.-H. Liao, P.-I. Liu, H.-M. Tsai, C.-C.M. Ma, N.-W. Pu, M.-D. Ger,

Carbon 49 (2011) 3597

-[29] A.M. Ramli, M.Z. Razali, N.A. Ludin, Malaysian J. Anal. Sci. 21 (2017)

-[30] X. Fang, M. Li, K. Guo, Y.Z. Hu, X. Liu, B. Chen, X. Zhao, Electrochim. Acta 65 (2012) 174

-[31] H. Wang, S.L. Leonard, Y.H. Hu, Ind. Eng. Chem. Res. 51 (2012) 10613

-[32] L. Zhang, Z.-S. Wang, J. Mater. Chem. C 4 (2016) 3614

-[33] R. Ramamoorthy, K. Karthika, A. Maggie Dayana, G. Maheswari, V. Eswaramoorthi, N.

Pavithra, S. Anandan, R. Victor Williams, J. Mater. Sci. Mater. Electron. 28 (2017) 13678

-[34] J. Song, X. Wang, C.T. Chang, J. Nanomater. 2014 (2014) 1

-[35] N. Ahmadiani, R.J. Robbins, T.M. Collins, M.M. Giusti, J. Agric. Food Chem. 62 (2014) 7524

-[36] H. Wang, L. Nie, J. Li, Y. Wang, G. Wang, J. Wang, Z. Hao, Chin. Sci. Bull. 58 (2013) 724

-[37] N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, ACS Nano 4 (2010) 88

-[38] H. Khudier, M. Al-Bahrani, J. Coll. Educ. 9 (2019) 227

-[39] T. Chen, W. Hu, J. Song, G.H. Guai, C.M. Li, Adv. Funct. Mater. 22 (2012) 5245

-[40] A. Okello, B.O. Owuor, J. Namukobe, D. Okello, J. Mwabora, Heliyon 7 (2021) e06571

-[41] K. Sharma, V. Sharma, S.S. Sharma, Nanoscale Res. Lett. 13 (2018)

-[42] A. Hegazy, N. Kinadjian, B. Sadeghimakki, S. Sivoththaman, N.K. Allam, E. Prouzet, Sol.

Energy Mater. Sol. Cells 153 (2016) 108

-[43] K. Ramalingam, C. Indulkar, Distrib. Gener. Syst. (2017) 69

-[44] M.U. Shahid, N.M. Mohamed, M. Khatani, A.S. Muhsan, A. Samsudin, M.I. Irshad, S.N.A.

Zaine, AIP Conf. Proc; 2017

-[45] Badis Bendjemil, Maram Mechi, Khaoula Safi, Mounir Ferhi, Karima Horchani Naifer, Exp.

Theo. NANOTECHNOLOGY 8 (2024) 51

-[46] A. M. Ahmed Alwaise, Raqeeb H. Rajab, Adel A. Mahmood, Mohammed A. Alreshedi, Exp.

Theo. NANOTECHNOLOGY 8 (2024) 67

Published

2025-02-15

How to Cite

Influence of GO concentration on photoconversion efficiency for dye-sensitized solar cells using GO:TiO2-AD as photoanodes. (2025). Experimental and Theoretical NANOTECHNOLOGY, 9(1), 103-114. https://doi.org/10.56053/9.S.103