Improving physical properties for insulator ceramics using local materials
DOI:
https://doi.org/10.56053/9.S.67Keywords:
Cordierite, Mullite, Ceramic, Bauxite, Physical Properties, Local materialsAbstract
Kaolinitic claystone, silica sand, and Bauxite are used to produce the raw materials, with additional locally available materials being added. Also utilized are Pura Silica, Rice husk ash produces Silica, as well as MgCo3, and Mg(OH)2. The raw materials listed earlier are pulverized and crushed into a size of lower than 45 microns. The raw materials underwent physical and chemical analysis. The samples are dryers add fired in 1300,1350,1400 and 1450°C according fire program 50°C /hour in socking time 2 hours. Physical evaluated tests are done to the samples. From the results of these testes, we saw that 1300°C firing temperature is not enough to get the sintering between mullite and the addition of cordierite. The evaluations given by the samples fired in 1400°C are the most favorable. Samples that fired in 1450°C have not good physical, specifications because the samples containing 50%, 60% and 70% cordierite are melted. Samples containing 30% and 40% cordierite are the best in our current study because they have good physical specifications, their mixtures could be used in production Ceramic insulators.
References
-[1] R.C. Buchanan, Ceramic Materials for Electronics, 2nd ed., Marcel Dekker Inc., Ed., New York,
-[2] K. Dana, S. Das, K.S. Das, J. Eur. Ceram. Soc. 24 (2004) 3169
-[3] P.W. Olu pot, S. Jonsson, J.K. Byaruhanga, J. Mater. Eng. Perform. 19 (8) (2010) 1133
-[4] P.W. Olu pot, Licentiate Thesis in Material Science, Department of Materials Science and
Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden, 2006
-[5] S. Kasrani, A. Harabi, S.E. Barama, L. Foughali, M.T. Benhassine, D.M. Aldhayan, Ceramics 62
(364) (2016) 405
-[6] M. Touzin, D. Goeuriot, C. Guerret-Piécourt, D. Juve, H.J. Fitting, J. Eur. Ceram. Soc. 30 (4)
(2010) 805
-[7] S.R. Bragança, C.P. Bergmann, Ceram. Int. 29 (2003) 801
-[8] O.I. Ece, Z. Nakagawa, Ceram. Int. 28 (2002) 131
-[9] M. Romero, J.M. Pérez, Mater. Construct. 65 (2) (2015) 1
-[10] P.K. Sahu, L. Chandra, R.K. Pandey, N.S. Mehta, R. Dwivedi, V.N. Mishra, R. Prakash,
Macromol. Chem. Phys. 220 (2019)
-[11] N.S. Mehta, M.R. Majhi, Int. J. Innovate. Res. Sci. Eng. Technol. (2016) 16261
-[12] F.A. Andrade, H.A. Al-Qureshi, D. Hotza, Appl. Clay Sci. 51 (1–2) (2011) 1
-[13] N.S. Mehta, S. Dey, M.R. Majhi, Mater. Chem. Phys. 259 (2021) 124020
-[14] C. Ancey, J. Nonnewton. Fluid Mech. 142 (1–3) (2007) 4
-[15] N.S. Mehta, P.K. Saho, P. Tripathi, R. Pyre, M.R. Majhi, Boletín la Soc. Española Cerámica y
Vidr. (2017) 1
-[16] S. Ianoşev, I. Lazău, C. Păcurariu, A. Avramescu, Processing and Application of Ceramics 2 (1)
(2008) 39
-[17] M.M. Najim, B.A. Yousif, Iraqi Geological Journal. 53 (2F) (2020) 49
-[18] A.A. Albhilil, M. Palou, J. Kozánková, M. Boháˇc, Arab J Sci Eng 40 (2015) 151
-[19] P. Relloir, Exp. Theo. NANOTECHNOLOGY 7 (2023) 111
-[20] M.M. Najim, L.J. Ibraheim, 2nd International Conference on Materials Engineering & Science
(IConMEAS 2019), Vol. 2213, Issue 1, 25 March; 2020
-[21] E.M. Hadi, S.I. Hussein, Energy Procedia 157 (2019) 241
-[22] F.O. Aramide, Leonardo J. Sci. 26 (2015) 67
-[23] S.A. Zaidan, M.H. Omar, Appl. Phys. A 124 (386) (2018) 1
-[24] F.O. Aramide, Leonardo Journal of Sciences 21 (2012) 70
-[25] M.M. Najim, B.A. Yousif, Iraqi Geological Journal. 54 (1A) (2021) 23
-[26] W. Antoine, K. Kennedy, Exp. Theo. NANOTECHNOLOGY 7 (2023) 131
-[27] J. Radehaus, Exp. Theo. NANOTECHNOLOGY 7 (2023) 143