Influence of AgNO3 on characteristics of ITO nanoparticles and sliding angle

Authors

  • Alaa M. Theban University of Baghdad, College of Science, Department of Physics, Baghdad, Iraq Author
  • Falah H. Ali University of Baghdad, College of Science, Department of Physics, Baghdad, Iraq Author

DOI:

https://doi.org/10.56053/9.S.51

Keywords:

ITO, AgNO3, Crystalline size, Superhydrophobic surfaces

Abstract

This research article reports ITO and ITO+AgNO3 with different ratios (50 to 150 step 50) % have been that prepared by sol gel method. Its structural, optical, morphological, Topographical and sliding measurement is investigated.  The prepared samples are characterized using different techniques like XRD, EDX, AFM, SEM and UV-Vis, analysis. From XRD found ITO films with cubic crystal structure. The X-ray diffraction (XRD) analysis of the samples indicates the absence of any silver or silver oxide compounds at 50% and 100% concentrations. However, at 150% concentration, the XRD spectra reveal the presence of two small diffraction peaks, which corroborate the existence of Ag2O and AgO. Themean crystal size is 44.1 nm, 14.38 nm, 14.33 nm, and 25.29 nm for the pure, (50 to 150 step 50) % samples, respectively. The EDX spectra indicate the existence of In, O, and Sn components in the deposited films. From SEM observed increasing the concentration of AgNO3 (50 to 150 step 50) % lead to result in any change in the morphology and particles size.  Based on AFM images, it is clear that films containing only ITO and ITO+AgNO3 in varying proportions (50 to 150 50% steps) reveal the growth as sharp peaks distributed over the surface with average grain sizes of 70 nm, 40 nm, 60 nm, and 160 nm, respectively. The energy gap values fall dramatically from 4.49 eV to 1.9 eV as the mixing ratios of AgNO3 increase from 50% to 150%. The outcomes of the SA measurement. The sliding angle decreased from 73 to 46 degrees as the AgNO3 ratio increased

References

-[1] H.I. Abdullah, A.A. Al-Amiery, S.B. Al-Baghdadi, J. Phys. Conf. Ser. 1853 (2021) 012052

-[2] A. Weiser, D.J. Lang, T. Schomerus, A. Stamp, J. Clean. Prod. 94 (2015) 376

-[3] M. Ismail, Exp. Theo. NANOTECHNOLOGY 7 (2023) 95

-[4] X. Wang, J. Whitaker, Exp. Theo. NANOTECHNOLOGY 7 (2023) 67

-[5] H. Zhang, F. Ye, L. Liu, H. Xu, C. Sun, J. Alloys Compd. 504 (2010) 171

-[6] A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, V. Ganesan, C.H. Bhosale, J. Alloys Compd. 464

(2008) 387

-[7] L. Kerkache, A. Layadi, A. Mosser, J. Alloys Compd. 485 (2009) 46

-[8] S.-J. Hong, J.-I. Han, Curr. Appl. Phys. 6S1 (2006) e206

-[9] P. Psuja, W. Strek, Proc. SPIE 6674 (2007) 667408

-[10] T. Ogi, F. Iskandar, Y. Itoh, K. Okuyama, J. Nanopart. Res. 8 (2006) 343

-[11] Y. Zhang, H. Ago, J. Liu, et al., J. Cryst. Growth 264 (2004) 363

-[12] K. Soulantica, L. Erades, M. Sauvan, F. Senocq, A. Maisonnat, B. Chaudret, Adv. Funct. Mater.

(2003) 553

-[13] H.S. Kim, P.D. Byrne, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 130 (2008) 12580

-[14] A. Zaine Abbas, R.B. Abdulrahman, T.A. Mustafa, Baghdad Sci. J. 21 (2024) 204

-[15] H. Gandhi, S. Khan, Nanomedicine Nanotechnol. 7 (2016) 36

-[16] K. Kajihara, J. Asian Ceram. Soc. 1 (2013) 121

-[17] B. Li, X. Wang, M. Yan, L. Li, Mater. Chem. Phys. 78 (2003) 184

-[18] R. Vijayalakshmi, V. Rajendran, Arch. Appl. Sci. Res. 4 (2012) 1183

-[19] A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, R. Stevens, Surf. Interface Anal. 38

(2006) 473

-[20] R. Verma, B. Mantri, A.K. Srivastava, Adv. Mater. Lett. 6 (2015) 324

-[21] D. Bokov, A.T. Jalil, S. Chupradit, W. Suksatan, M.J. Ansari, I.H. Shewael, G.H. Valiev, E.

Kianfar, Adv. Mater. Sci. Eng. 2021 (2021) 5102014

-[22] F.H. Ali, J. Phys. Conf. Ser. 2114 (2021) 012076

-[23] A. Feinle, M.S. Elsaesser, N. Hüsing, Chem. Soc. Rev. 45 (2016) 3377

-[24] Y. Liao, Y. Xu, Y. Chan, Phys. Chem. Chem. Phys. 15 (2013) 13704

-[25] M.M. Mohsin, F.H. Ali, Chem. Methodol. 7335 (2023) 347

-[26] W.K. Tan, H. Muto, G. Kawamura, Z. Lockman, A. Matsuda, Nanomaterials 11 (2021) 181

-[27] M.J. Alam, D.C. Cameron, Thin Solid Films 377-378 (2000) 455

-[28] M. Thirumoorthi, J.T. Joseph Prakash, J. Asian Ceram. Soc. 4 (2016) 124

-[29] N.C. Silva Vieira, E.G. Ramos Fernandes, A.A. Alencar de Queiroz, F.E. Gontijo Guimarães, V.

Zucolotto, Mater. Res. 16 (2013) 1156

-[30] L. Dong, G.S. Zhu, H.R. Xu, X.P. Jiang, X.Y. Zhang, Y.Y. Zhao, D.L. Yan, L. Yuan, A.B. Yu, J.

Mater. Sci. Mater. Electron. 30 (2019) 8047

-[31] M. Fang, A. Aristov, K.V. Rao, A.V. Kabashin, L. Belova, RSC Adv. 3 (2013) 19501

-[32] H.R. Fallah, M. Ghasemi, A. Hassanzadeh, Physica E 39 (2007) 69

-[33] Y.S. Jung, Thin Solid Films 467 (2004) 36

-[34] Res. J. Chem. Environ. 20 (2016) 10

-[35] H.D. Hamadalla, F.H. Ali, Iraqi J. Appl. Phys. 19 (2023) 49

-[36] F.H. Ali, W.A.A. Twej, A.K. Al-Khafaji, J. Spectrosc. Mol. Phys. 10 (2015) 91

-[37] A. Riaz, A. Ashraf, H. Taimoor, S. Javed, M.A. Akram, M. Islam, M. Mujahid, I. Ahmad, K.

Saeed, Coatings 9 (2019) 202

-[38] J. Kim, S. Shrestha, M. Souri, J.G. Connell, S. Park, A. Seo, Sci. Rep. 10 (2020) 12486

-[39] Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, Y. Zheng, Mater.

Sci. Semicond. Process. 26 (2014) 588

-[40] S.I. Saeed, M.A. Ali, W.K. Abad, A.N. Abd, Int. J. Nanoscience 23 (2024) 2350063

-[41] S. Li, J. Huang, Z. Chen, G. Chen, Y. Lai, J. Mater. Chem. A 5 (2017) 31

-[42] P. Zhang, F.Y. Lv, Energy 82 (2015) 1068

-[43] H. Zhong, Z. Zhu, J. Lin, C.F. Cheung, V.L. Lu, F. Yan, C.Y. Chan, G. Li, ACS Nano 14 (2020)

-[44] Y. Liu, A. Das, Z. Lin, I.B. Cooper, A. Rohatgi, C.P. Wong, Nano Energy 3 (2014) 127

-[45] G. Wang, J. Zhou, M. Wang, Y. Zhang, Y. Zhang, Q. He, Soft Matter 16 (2020) 5514

-[46] J. Luo, S. Gao, H. Luo, L. Wang, X. Huang, Z. Guo, X. Lai, L. Lin, R.K.Y. Li, J. Gao, Chem.

Eng. J. 406 (2021) 126898

-[47] W. Ma, M. Zhang, Z. Liu, M. Kang, C. Huang, G. Fu, J. Membr. Sci. 570-571 (2019) 303

-[48] W. Hu, J. Huang, X. Zhang, S. Zhao, L. Pei, C. Zhang, Y. Liu, Z. Wang, Appl. Surf. Sci. 507

(2020) 145168

-[49] B. Zhang, Y. Zeng, J. Wang, Y. Sun, J. Zhang, Y. Li, Mater. Des. 188 (2020) 108479

-[50] X. Gong, S. He, ACS Omega 5 (2020) 4100

-[51] A. Matin, N. Merah, A. Ibrahim, Prog. Org. Coat. 99 (2016) 322

-[52] V. Edachery, R.S., S.V. Kailas, Tribol. Int. 158 (2021) 106932

-[53] P. Relloir, Exp. Theo. NANOTECHNOLOGY 7 (2023) 111

-[54] J. Robin, K. Kelvin, Exp. Theo. NANOTECHNOLOGY 7 (2023) 119

Downloads

Published

2025-02-21

How to Cite

Influence of AgNO3 on characteristics of ITO nanoparticles and sliding angle . (2025). Experimental and Theoretical NANOTECHNOLOGY, 9(1), 51-66. https://doi.org/10.56053/9.S.51