Study the physical, mechanical and electrical properties of ceramics prepared from Iraqi raw materials and their improvement
DOI:
https://doi.org/10.56053/9.S.39Keywords:
Bauxite, Cordierite, Kaolin clay, CeramicAbstract
In this study, locally available raw materials are the main ingredients in the preparation of cordite and mullite, such as kaolin clay, bauxite, etc. Silica prepared from rice husk ash is also used, in addition to magnesium oxide and magnesium carbonate. The materials are crushed and ground to a size of less than 45 microns. The samples are subjected to physical and chemical analysis. The materials are burned and dried in a burning program at an increase of 50 °C/hour for two hours (1300 - 1450). Physical (Apparent Porosity and Water Absorption) Mechanical (compressive strength) and electrical (breakdown voltage) tests are performed on the samples. From the results of these testes, we saw that 1300°C firing temperature is not enough to get the sintering between mullite and the addition of cordierite. The evaluations given by the samples fired in 1400°C are the most favorable. Samples that fired in 1450°C
have not good Mechanical and electrical, specifications because the samples containing 50%, 60% and 70% cordierite are melted. Samples containing 30% and 40% cordierite are the best in our current study because they have good mechanical and electrical specifications, their mixtures could be used in production Ceramic insulators.
References
-[1] Y. Sung, J. Mater. Sci. 31 (1996) 5421
-[2] R. Rodney, M. Irwin, H. Paul, U.S. Patent 4,001,028 (1977)
-[3] M. Karkhanavala, F. Hummel, J. Am. Ceram. Soc. 36 (1953) 389
-[4] A. Blodgett, R. Barbour, IBM J. Res. Devel. (1982) 30
-[5] McMillan, Soc. Glass Tech. 6 (1985) 286
-[6] M.M. Najim, B.A. Yousif, Iraqi Geol. J. 54 (2021) 23
-[7] K. Song, S. Wu, P. Liu, H. Lin, Z. Ying, P. Zheng, W. Su, J. Deng, L. Zheng, H. Qin, J. Alloy.
Comp. 628 (2015) 57
-[8] M.M. Najim, B.A. Yousif, Iraqi Geol. J. 53 (2020) 49
-[9] A.A. Albhilil, M. Palou, J. Kozánková, M. Boháˇc, Arab J. Sci. Eng. 40 (2015) 151
-[10] F. Sadegh Moghanlou, M. Vajdi, H. Jafarzadeh, Z. Ahmadi, A. Motallebzadeh, F. Sharifianjazi,
M. Shahedi Asl, M. Mohammadi, Ceram. Int. 47 (2021) 10057
-[11] Muhammad Ismail, Exp. Theo. NANOTECHNOLOGY 7 (2023) 95
-[12] P.J. S.-Soto, D. Eliche-Quesada, S. Martínez-Martínez, L. Pérez-Villarejo, E. Garzón, Materials
(2022) 583
-[13] A.S. Ibrahim, A.A. Baba, SSRN Electron. J; 4 (2022) 45
-[14] E.M. Hadi, S.I. Hussein, Energy Procedia 157 (2019) 241
-[15] L. Carbajal, F. Rubio-Marcos, M.A. Bengochea, J.F. Fernandez, J. Eur. Ceram. Soc. 27 (2007)
-[16] R. Kumar, B. Bhattacharjee, Cem. Concr. Res. 33 (2003) 155
-[17] E.I. Ezenwabude, T.C. Madueme, Int. J. Multidiscip. Sci. Eng. 6 (2015)
-[18] V.M. Nardo, G. Cassone, R.C. Ponterio, F. Saija, J. Sponer, M. Tommasini, S. Trusso, J. Phys.
Chem. A 124 (2020) 10856
-[19] C.J.F. Böttcher, Recueil Trav. Chim. Pays-Bas 64 (2010) 47
-[20] X. Wang, J. Whitaker, Exp. Theo. NANOTECHNOLOGY 7 (2023) 67
-[21] R. Sahnoun, Exp. Theo. NANOTECHNOLOGY 7 (2023) 78
-[22] J. Christ, M. Filips, R. Nowak, M. Reed, Exp. Theo. NANOTECHNOLOGY 7 (2023) 87