Antibacterial activity and wound healing properties of chitosan ana nanoparticle chitosan in rat

Authors

  • Hussein Shundi Alhajj Al-Gharbawi Department of Biology, College of Education for Pure Sciences, University of Wasit, Iraq Author
  • Marwan Saleh Mahdi Department of Biology, College of Education for Pure Sciences, University of Wasit, Iraq Author
  • Mustafa Naeem Nuhair Al-sarray Department of Biology, College of Education for Pure Sciences, University of Wasit, Iraq Author
  • Sajjad Jawad Kadhi Al-sarray Department of Biology, College of Education for Pure Sciences, University of Wasit, Iraq Author

DOI:

https://doi.org/10.56053/9.S.27

Keywords:

Antibacterial activity, Chitosan, Rat model, Nanotechnology

Abstract

This study investigates the antibacterial and wound healing properties of chitosan and chitosan nanoparticles in a rat model. Twenty adult male rats are divided into two groups: one group received chitosan treatment, and the other received chitosan nanoparticle treatment. Each rat had two skin slits, which are dried over seven days. Wound healing is estimated through histopathological and
microbiological duties. The findings tell that chitosan nanoparticles significantly develop wound healing and exhibit bigger antibacterial activity compared to traditional chitosan, representing their potential for innovative wound care applications.

References

-[1] M. Rinaudo, Prog. Polym. Sci. 31 (2006) 603

-[2] R.C. Goy, D. Britto, O.B. Assis, Polímeros 19 (2009) 241

-[3] R. Jayakumar, M. Prabaharan, S.V. Nair, H. Tamura, Biotechnol. Adv. 28 (2010) 142

-[4] S.M. Ahsan, M. Thomas, K.K. Reddy, S.G. Sooraparaju, A. Asthana, I. Bhatnagar, Int. J. Biol.

Macromol. 110 (2018) 97

-[5] T. Fujimoto, K. Nakayama, S. Yokoyama, T. Matsuda, Int. J. Food Microbiol. 112 (2006) 96

-[6] S.U. Islam, J. Pharm. Anal. 11 (2021) 564

-[7] S.Y.C. Tong, A.P. Hansen, C.S. Chapman, L.H. Williams, M.D. Chen, Clin. Microbiol. Rev. 28

(2015) 603

-[8] N.A. Turner, R. Sharma, A. Jeyaseelan, C.J. Sen, Nat. Rev. Microbiol. 17 (2019) 203-218.

-[9] M. Kong, X.G. Chen, J. Biomed. Mater. Res. A 101 (2013) 112

-[10] E.R. Kenawy, F.I. Abdel-Hay, A.M. El-Raei, O.F. Abdel-Gawad, Int. J. Biol. Macromol. 79 (2015)

-[11] S. Saravanan, R.S. Leena, N. Selvamurugan, Int. J. Biol. Macromol. 93 (2016) 1354

-[12] M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Prog. Polym. Sci. 36 (2011) 981

-[13] S. Patel, S. Srivastava, M.R. Singh, D. Singh, Int. J. Biol. Macromol. 117 (2018) 434

-[14] J.D. Bancroft, K.S. Suvarna, Bancroft's Theory and Practice of Histological Techniques, 8th ed.,

Elsevier Health Sciences; 2018

-[15] M. Jahan, S. Rahman, M. Hossain, J. Adv. Vet. Anim. Res. 2 (2015) 49

-[16] Z. Zuhannisa, A. Islam, A. Zain, P. Hossain, A. Kabir, A. Zohora, AIP Conf. Proc. 1823 (2017) 1

-[17] A.J. Jasem, M.A. Mahmood, J. Emerg. Med. Trauma Acute Care 3 (2023) 10.

-[18] W. Yeddes, M. Hammami, S. Khammassi, T. Grati, W. Aidi Wannes, M. Tounsi, Int. J.

Multidiscip. Stud. 3 (2022) 1

-[19] A. Ata, W. Wardana, T. Fumina, T. Fumihiko, J. Chem. Eng. 862 (2020) 83

-[20] V.N. Tan, T.T.H. Nguyen, S.L. Wang, T.P.K. Vo, A.D. Nguyen, Res. Chem. Intermed. 43 (2017)

-[21] H. Yan, Y. Lu, H. Chen, W. Cheng, Z.D. Yang, J. Appl. Polym. Sci. 117 (2010) 3362

-[22] R.A. Robert, A. Mayanovic, Nanomaterials 13 (2023) 1302

-[23] F. Mega, W. Warsito, F. Agustiani, J. Nanotechnol. 1011 (2020) 012027

-[24] D. Vollath, Beilstein J. Nanotechnol. 11 (2020) 854

-[25] S. Esmail, M. Sharifzadeh, M. Karami, F. Ader, Polym. Eng. Sci. 63 (2023) 1303

-[26] D. Vollath, Beilstein J. Nanotechnol. 12 (2021) 1093

-[27] N. Iranpour, A. Kamran, T. Neda, U. Cendrowska, F. Stellacci, A. Dommann, P. Wick, A. Neels,

Nano Res. 13 (2020) 2847

-[28] S. Bo, L. Zhang, Y. Li, L. Zhou, Z. Yang, Z. Wang, J. Zhang, Microsc. Res. Tech; 2021

-[29] S.R. Aid, N. Zain, N. Rashid, H. Hara, K. Shameli, K. Iwamoto, J. Phys. Conf. Ser. 1447 (2020)

-[30] J.D. López Gutiérrez, I.M. Abundez Barrera, N. Torres Gómez, Nanomaterials 12 (2022) 1818

-[31] M. Khanmohammadi, H. Elmizadeh, K. Ghasemi, Iran J. Pharm. Res. 14 (2015) 665

-[32] M. Khanmohammadi, H. Elmizadeh, K. Ghasemi, Iran J. Pharm. Res. 14 (2015) 665

-[33] M. Mandar, R. Shirolkar, R. Athavale, S. Ravindran, V. Rale, A. Kulkarni, R. Deokar, Nano-Struct.

Nano-Objects 25 (2021) 100657

-[34] M. Owczarek, L. Herczyńska, P. Sitarek, T. Kowalczyk, E. Synowiec, T. Sliwinski, I. Krucińska,

Molecules 28 (2023) 4950

-[35] R. Shapi'i, S. Othman, S. Siti, J. Food Sci. Technol. 23 (2016) S187

-[36] F. Cava, L. Ferreira, M. Lima, Cell. Mol. Life Sci. 68 (2011) 817

-[37] A. Ivask, L. Tedim, R. Rale, ACS Nano 8 (2014) 374

-[38] K. Birsoy, H. Frese, T. Kwon, Cell 162 (2015) 540

-[39] M. Joshi, G. Patel, A. Mishra, Biotechnol. Adv; 2009

-[40] S.M. Mawazi, A. Moutia, A. Saeed, Polymers 16 (2024) 1351

-[41] M.M. Sheir, M.M. Nasra, O.Y. Abdallah, Int. J. Pharm. 607 (2021) 120963

-[42] X. Che, T. Zhao, J. Hu, K. Yang, N. Ma, A. Li, Q. Sun, C. Ding, Q. Ding, Polymers 16 (2024) 344

-[43] H.L. Loo, B.H. Goh, L.H. Lee, L.H. Chuah, Asian J. Pharm. Sci. 17 (2022) 299

-[44] X. Fang, J. Cao, A. Shen, J. Drug Deliv. Sci. Technol. 57 (2020) 101662

-[45] Oula Jabbar, Ali H. Reshak, Exp. Theo. NANOTECHNOLOGY 7 (2023) 41

-[46] L. Li, S. Naher, Exp. Theo. NANOTECHNOLOGY 7 (2023) 55

Downloads

Published

2025-02-21

How to Cite

Antibacterial activity and wound healing properties of chitosan ana nanoparticle chitosan in rat. (2025). Experimental and Theoretical NANOTECHNOLOGY, 9(1), 27-38. https://doi.org/10.56053/9.S.27