Optical analysis of PVA/CdS nanostructure
DOI:
https://doi.org/10.56053/9.1.9Keywords:
CdS, Nanocomposites, OpticalAbstract
The optical properties of polyvinyl alcohol (PVA) matrix embedded with cadmium sulfide (CdS) nanostructures were investigated to understand their potential applications in optoelectronic devices. CdS nanoparticles were synthesized and uniformly dispersed within the PVA matrix using a solution-casting method. The structural and morphological characterization confirmed the formation of well-dispersed CdS nanostructures within the polymer matrix. UV-vis spectroscopy analysis revealed a significant blue shift in the absorption edge due to the quantum confinement effect of CdS nanoparticles. Photoluminescence (PL) studies indicated enhanced emission properties, suggesting strong interaction between the polymer and the semiconductor nanoparticles. The optical band gap was found to increase with decreasing nanoparticle size, demonstrating the tunability of optical properties through nanostructure formation. These results suggest that PVA/CdS nanostructures hold promise for applications in photonic and optoelectronic devices, including light-emitting diodes and photodetectors.
References
-[1] Ahmed, M.A. and M.S. Abo-Ellil, J. Materials Science, Materials in Electronics 9 (1998) 395
-[2] Ziyad Khalf Salih, Angham Ayad Kamall-Eldeen, Exp. Theo. NANOTECHNOLOGY 8 (2024) 27
-[3] Ali, Z.I., F.A. Ali and A.M. Hosam, 2009. Spectrochim. Acta A 72 (2007) 875
-[4] Alvarez, A.L., J. Tito, M.B. Vaello, P. Velasquez, R. Mallavia, M.M. Sánchez-Lopez, Thin Solid Films 433 )2003( 80
-[5] Badr, Y. and M. Mahmoud, Spectrochim. Acta A 65 ( 2006 (590
-[6] Brus, L.E., J. Chem. Phys. 80 (1984( 4403
-[7] Cozzoli, P.D., T. Pellegrino and L. Manna, Chem. Soc. Rev. 35 (2006) 1208
-[8] Dutta, P., S. Biswas and S.K. De, 2002. Materials Research Bulletin 37 (2002) 139
-[9] El-Tantawy, F., K.M. Abdel-Kader, F. Kaneko and Y.K. Sung, Eur. Polym. J. 40 (2004) 30
-[10] Ethayaraja, M., C. Ravikumar, D. Muthukumaran, K. Dutta and R. Bandyopadhyaya, J. Phys. Chem. C 111 (2007) 3246
-[11] Gyeong-Man Kim, Ashraf Sh Asran, Georg H Michler, Paul Simon and Jeong-Sook Kim, Bioinspiration & Biomimetics 3 (2008) 046003
-[12] Hodge, R.M., G.H. Edward and G.P. Polymer 37 (1996) 1371
-[13] Huang, H.H., X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng and G.Q. Xu, Langmuir 12 (1996) 912
-[14] Kelly, K.L., E. Coronado, L.L. Zhao and C. Schatz George, J. Phys. Chem. B 107 (2003) 677
-[15] Abraham George, Exp. Theo. NANOTECHNOLOGY 8 (2024) 1
-[16] M. Tadres, Exp. Theo. NANOTECHNOLOGY 8 (2024) 11
-[17] Kuljanin, J., M.I. Comor, V. Djokovic and J.M. Nedeljkovic, Mater. Chem. Phys. 95 (2006) 71
-[18] Mews, A., A. Eychmüler, M. Giersig, D. Schooss and H. Weller, J. Phys. Chem. 98 (1994) 41
-[19] Michalet, X., F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir and S. Weiss, Science 307 (2005) 544
-[20] Murakata, T., Y. Higashi, N. Yasui, T. Higuchi and S. Sato, J. Chem. Eng. Jpn. 35 (2002) 1276
-[21] J. G. Kim, P. Tan, Exp. Theo. NANOTECHNOLOGY 8 (2024) 17
Nenadovic, M.T., M.I. Comor, V. Vasic and O.I. Micic, J. Phys. Chem. 94 (1990) 6
-[22] Nozik, A.J., F. Williams, M.I. Nenadovic, T. Rajh and O.I. Micic, J .Phys. Chem. 89 (1985) 399
-[23] Maria S. da Dunla, Exp. Theo. NANOTECHNOLOGY 8 (2024) 23
-[24] Reenamole Georgekutty, Michael K. Seery and C. Suresh, J. Pillai 2008. Phys. Chem. C 112 (2008) 13570