Fabrication and structural characterisation of ZrC-W cermet by spark plasma sintering: Application in ballistical projection
DOI:
https://doi.org/10.56053/8.3.51Keywords:
FAST-SPS-FCT technology, Ceramic Metal-Composite, FGMs, Mechanical properties, Composite armor, Body armorAbstract
This paper describes the effect of addition of tungesten (W) when was introduced into ZrC composite forming ceramic metal-composite (MMC) and (FGMS) to improve the fracture toughness (KIC) and hardeness (Hv) of the composite ceramic-metal. ZrC and ZrC with addition of 20 % of tungesten (ZrC-W) were prepared by vacuum sintering FAST-SPS-FCT technology at the temperatures in the range of 1700–1800 °C for 400 s under pressure of 50 Mpa. Microtructural properties were investigated by X-ray diffraction and energy-dispersive spectrometry in addition scanning electron miroscopy. The investigations shows that the phase separation of the as-sintered ZrC and ZrC-20 wt%W into two phases: ZrC (dark) and (C)W (bright) indicating that the as-sintered (ZrC)W was thoroughly decomposed in tree phases ZrC, W2C and WC. The effect of the W is already illustrated. X-ray diffraction and energy-dispersive spectrometry results indicate that bright grains are W, (W)C and dark ZrC solid solution. The relative density increases with the reinforcement by W into ZrC. Fully dense ZrC and ZrC-20 vol% W ceramic metal-composite with a relative density of more than 98.8 % were obtained. The Vickers hardennes (HV), fracture toughness (KIC) and Raman spectroscopy will be performed in the near future. In addition, ballistic performance (dynamic properties by projectil persing resistance) . A finite element simulation will used to optimise the vol% W addition to obtain better mechanical properties and ballistical performance. The Analyzer of the termo-mechanical evolution within the volume of ZrC and ZrC-W specimens subjected to FAST-SPS-FCT platform (thermo-mechanical modeling under ABAQUS). Also, the ballistic performance will be evaluated using the Rosenberg model and compared with the experimental results in order to better understand the dynamic shock behavior of ceramic metal-composite (ZrC and ZrC-W) by the projectile that to be applied for body armor.
References
-[1] R. Zhang, B. Han, L. Li, ZN. Zhao, Q. Zhang, QC. Zhang, Compos Struct 227 (2019) 111258
-[2] J. Marx, M. Portanova, A. Rabiei, Compos. Struct 225 (2019) 111032
-[3] W. Liu, Z. Chen, Z. Chen, X. Cheng, et al., Mater Des 87 (2015) 421
-[4] PJ. Hazell, Armour: materials, theory, and design. Boca Raton, FL, USA: CRC Press; 2015
-[5] WA. Gooch, BHC. Chen, MS. Burkins, R. Palicka, JJ. Rubin, Mater Sci Forum 1999
-[6] S. Li, G. Wang, K. Zhang, et al., J Alloys Compd 950 (2023) 169948
-[7] X. Zhang, Q. Meng, K. Zhang, et al, Chem Eng J 463 (2023) 142378
-[8] ESC. Chin, Mater Sci Eng, A 259 (1999) 15561
-[9] HA. Bruck, Int J Solid Struct 37 (2000) 638395
-[10] A. Pettersson, P. Magnusson, P. Lundberg, M. Nygren, Int J Impact Eng 32 (2005) 38799
-[11] JW. McCauley, GD. Andrea, K. Cho, MS. Burkins, Report Documentation of US Army Research Laboratory; 2006
-[12] N. Gupta, B. Basu, V. Prasad, M. Vemuri, Defence Sci J 62 (2012) 3829
-[13] E. Balci, B. Sarikan, M. Ubeyli, Kovove Mater 51 (2013) 25762
-[14] M. U¨ beyli, E. Balci, B. Sarikan, Mater Des 56 (2014) 316
-[15] ZL. Chao, LT. Jiang, GQ. Chen, J. Qiao, Compos B Eng 161 (2019) 62738
-[16] B. Koohbor, A. Kidane, Mater Des 102 (2016) 15161
-[17] K. Arslan, R. Gunes, Compos Struct 202 (2018) 30412
-[18] M. Aydin, MK. Apalak, Mater Sci Eng, A 671 (2016) 10717
-[19] M. Aydin, MK. Apalak, J Compos Mater 54 (2020) 3967
-[20] S. Chi, YL. Chung, Eng Fract Mech 70 (2003) 122743
-[21] A. Berezovski, J. Engelbrecht, Maugin GA, Eur J Mech Solid 22 (2003) 25765
-[22] DW. Templeton, TJ. Gorsich, TJ. Holmquist, Report U.S.A; 2006
-[23] J. Jovicic, A. Zavaliangos, F. KO, Modeling, Compos. A Appl. S. 31 (2000) 77384
-[24] Y. Li, KT. Ramesh, ESC. Chin, Int J Solid Struct 38 (2001) 604561
-[25] DS. Kleponis, Al. Mihalcin, GL. Filbey, U.S. Army Research Laboratory; 2005
-[26] Y. Wang, Q. Liu, Y. Li, Q. Shen, J. Phys. Confe. Seri. 419 (2013) 012026
-[27] WR. Wang, HF. Xie, L. Xie, HL. Li, X. Yang, YN. Shen, I. J. Min. Met. Mater. 25 (2018) 13208
-[28] R. Gunes, M. Aydin, Compos Struct 92 (2010) 244556
-[29] R. Gunes, M. Aydin, MK. Apalak, JN. Reddy, Compos Struct 93 (2011) 8609
-[30] R. Gunes, M. Aydin, MK. Apalak, et al. Compos B Eng 59 (2014) 2132
-[31] T. Zhang et al., Mater. Sci. Eng. A 527 (2010) 4914
-[32] M. Roosta et al.Int. J. Refract. Met. Hard Mater. 37 (2013) 29
-[33] J.H. Kim et al., J. Alloys Compd. 653 (2015) 528
-[34] M. Roosta et al., Int. J. Refract. Met. Hard Mater. 29 (2011) 710
-[35] A. Moradkhani et al., Eng. Fract. Mech. 191 (2018) 446
-[36] R.K. Mudanyi et al. Int. J. Refract. Met. Hard Mater. 94 (2021) 105411
-[37] W.G. Fahrenholtz et al., Scr. Mater. 94 (2017) 129
-[38] H. Wang et al., Int. J. Refract. Met. Hard Mater. 55 (2010) 572
-[39] C.W. Bale et al., Calphad. 33 (2002) 295
-[40] M. Roosta et al. Int. J. Refract. Met. Hard Mater. (2011) 8327
-[41] B. Bendjemil et al., Exp. Theo. NANOTECHNOLOGY 1 (2017) 49
-[42] D. Zhanga, Ch. Kenel, M. Caccia, K. H. Sandhage, D. C. Dunanda, J. Alloys Comp. 1 (2021) 100018
-[43] Toufik Nouri, Friha Khelfaoui, Kadda Amara, Abdelmadjid Bouhemadou, Fadila Belkharroubi, Y. Al-Douri, Physica B 678 (2024) 415780
-[44] Djamel Allali, Bouhemadou Abdelmadjid, Saad Essaoud Saber, Deghfel Bahri, Fares Zeraga, Rabie Amari, Missoum Radjai, Saad Bin-Omran, Khenata Rabah, Y. Al-Douri, Computational Condensed Matter 38 (2024) e00876
-[45] Y. Al-Douri, Mohammad Mansoob Khan, James Robert Jennings, Journal of Materials Science: Materials in Electronics 34 (2023) 993
-[46] X. Zhang, N. Liu, Int. J. Refract. Met. Hard Mater. 26 (2008) 575
-[47] Abraham George, Exp. Theo. NANOTECHNOLOGY 8 (2024) 1
-[48] J. G. Kim, P. Tan, Exp. Theo. NANOTECHNOLOGY 8 (2024) 17
-[49] Maria S. da Dunla, Exp. Theo. NANOTECHNOLOGY 8 (2024) 23