Structural, magnetic, electric and electronic aspects of the Ba2YbSbO6 perovskite material

Authors

  • L.A. Carrero Bermúdez Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá DC, Colombia Author
  • R. Moreno Mendoza Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá DC, Colombia Author
  • R. Cardona Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá DC, Colombia Author
  • D.A. Landínez Téllez Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá DC, Colombia Author
  • J. Roa-Rojas Grupo de Física de Nuevos Materiales, Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá DC, Colombia Author

DOI:

https://doi.org/10.56053/1.3.161

Keywords:

Perovskite, Characterization, Electronic structure

Abstract

A single crystallographic phase of the Ba2YbSbO6 perovskite was synthesized by the solid-state reaction method. From the refinement of the XRD pattern it was obtained that this sintered material crystallizes in a rhombohedral complex perovskite, R-3 (#148) space group. SEM images showed the sub-micrometric character of its granular surface. Measurements of susceptibility as a function of temperature evidenced the antiferromagnetic behavior of this material below the Néel temperature TN=118 K and a paramagnetic feature above this critical temperature. The magnetic parameters were obtained from the fitting of susceptibility in the paramagnetic regime with the Curie-Weiss equation. From theoretically calculated Density of States and band structure the semiconductor characteristic of the material was determined and the energy gap was predicted for the up and down spin orientations of the electron gas close to the Fermi level. The energy gap value was experimentally corroborated from diffuse reflectance spectra with the Kubelka-Munk fit of the experimental result. Measurements of dielectric constant as a function of applied frequencies at room temperature reveal a decreasing behavior.

References

-[1] L.T. Corredor, J. Roa-Rojas, D.A. Landínez Téllez, R. Beltrán, P. Pureur, F. Mesquita and J. Albino Aguiar, J. Appl. Phys. 113 (2013) 17E302/1-3

-[2] D.P. Llamosa, D.A. Landínez Téllez and J. Roa-Rojas, Physica B 404 (2009) 2726 (2009).

-[3] M. Baazaoui, S. Zemni, M. Boudard, H. Rahmouni, A. Gasmi, A. Selmi and M. Oumezzine, Int. J. Nanoelectronics and Materials. 3 (2010) 23

-[4] A.M. Glazer, Acta Crystallogr. B 28 (1972) 3384

-[5] A.M. Glazer, Acta Crystallogr. A 31 (1975) 756

-[6] P.M. Woodward, Acta Crystallogr. B 53 (1997) 32

-[7] C.J. Howard, B.J. Kennedy and P.M. Woodward, Acta Crystallogr. B 59 (2003) 463

-[8] M. Wakeshima, D. Harada and Y. Hinatsu, J. Alloys and Compd. 287 (1999) 130

-[9] M. Wakeshima, D. Harada, Y. Hinatsu and N. Masaki, J. Solid State Chem. 47 (1999) 618

-[10] M. Wakeshima, D. Harada and Y. Hinatsu, J. Mater. Chem. 10 (2000) 419

-[11] C.M. Bonilla, D.A. Landínez Téllez, J. Arbey Rodríguez, E. Vera López and J. Roa-Rojas, Phys. B 398 (2008) 208

-[12] A.C. Larson and R.B. von Dreele, General Structure Analysis System GSAS (Los Alamos National Laboratory Report LAUR 2000), pp. 86-748.

-[13] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universität Wien, Vienna, 2001) ISBN 3-9501031-1-2.

-[14] S. Kausar, S. Joshi and A. Srivastava, Int. J. Nanoelectronics and Materials. 7 (2014) 77

-[15] F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30 (1944) 244

-[16] M.W. Lufaso and P.M. Woodward, Acta Crystallogr. B 57 (2001) 725

-[17] W. Wondratschek, International Tables for Crystallography (2006), Vol. A, Chapter 8.3, pp. 732-740.

-[18] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX Standardized and crystal chemical characterization of inorganic structure types. In: Gmelein Handbook of Inorganic and Organometallic Chemistry, 8th ed. (Springer, Berlin, 1993).

-[19] C. Kittel, Introduction to Solid State Physics, 6th Ed., John Wiley & Sons, Inc., New York, (1997) pp. 482

-[20] M. Bonilla, D.A. Landínez Téllez, J.A. Rodríguez, J. Albino Aguiar and J. Roa-Rojas, J. of Magn. Magn. Mater. 320 (2008) e397

-[21] H. Einollahzadeh, R.S. Dariani and S.M. Fazeli, Solid State Commun. 229 (2016) 1

-[22] Y. Zhao and D. G. Truhlar, J. of Chem. Phys. 130 (2009) 074103/1-3

-[23] T. Higuchi, T. Tsukamoto, N. Sata, M. Ishigame, Y. Tezuka and S. Shin, Phys. Rev. B 57 (1998) 6978

-[24] N. Kulagin, J. Dojcilovic and D. Popovic, Cryogenics 41 (2001) 745

-[25] Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125 (2006) 194101/1-18

-[26] Y. Zhao and D. G. Truhlar, Acc. Chem. Res. 41 (2008) 157

-[27] E. Hosseine, Int. J. Nanoelectronics and Materials 8 (2015) 91

Downloads

Published

2017-07-15

Issue

Section

Articles

How to Cite

Structural, magnetic, electric and electronic aspects of the Ba2YbSbO6 perovskite material. (2017). Experimental and Theoretical NANOTECHNOLOGY, 1(3), 161-171. https://doi.org/10.56053/1.3.161