Single walled carbon nanotubes reinforced intermetallic TiNi matrix nanocomposites by spark plasma sintering

Authors

  • Badis Bendjemil LASEA, Dept of Chemistry, University of Badji-Mokhtar, 23000 Annaba, Algeria Author
  • Mahiedinne Ali-Rachedi Department of Mechanical Ingeniering, Faculty of Engineering Sciences, University of Badji-Mokhtar, Annaba, Algeria Author
  • Jamal Bougdira Institut of Jean Lamour, UMR 7198 CNRS - University of Lorraine, Faculty of Sciences and Technologies, BP 70239 F-54506 Vandoeuvre les NANCY cedex, France Author
  • Faming Zhang Physics of New Materials, Institute of Physics, 18055 Rostock, Germany Author
  • Eberhard Burkel Physics of New Materials, Institute of Physics, 18055 Rostock, Germany Author

DOI:

https://doi.org/10.56053/1.3.145

Keywords:

Intermetallic-matrix composites (IMCs), SWCNTs-reinforcement, Structural properties, Spark plasma Sintering, Nanocomposites, Mechanical properties

Abstract

We report the processing of single walled carbon nanotubes (SWCNTs) reinforced TiNi intermetallic matrix nanocomposites from Ti/Ni and SWCNTs powders using spark plasma sintering (SPS) at temperatures from 1000 °C to 1200 °C. The SWCNTs are doped into the TiNi matrix from 0.0 to 1.0 wt%. The effect of SWCNTs reinforcement contents on the relative density, phases, microstructure and microhardness of TiNi intermetallics matrix andCNTs/TiC/TiNi nanocomposites are studied. The experimental results show that the TiNi sintered at T= 1200 °C reinforced with 0.8 wt% SWCNTs has the highest Vicker’s microhardness and relative density, which were HV 5.29 GPa and 96%, respectively. That can be explained by the precipitation of TiC and Ti2Ni in the matrix.This study explores the possibility of developing novel TiNi matrix nanocomposites with shape memory effect and biocompatibility.

References

-[1] T. Duerig, A. Pelton, D. Stockel. Mater Sci Eng A 273–275 (1999) 149

-[2] N.B. Morgan Mater Sci Eng A 378 (2004) 16

-[3] Kujala Sauli. Biocompatibility and biomechanical aspects of nitinol shape memory metal implants. Finland: Department of Surgery, Department of Anatomy and Cell Biology, University of Oulu press; (2003)

-[4] K. Otsuka, X. Ren, Progress in Materials Science 50 (2005) 511

-[5] M. Abedini, H.M. Ghasemi, M.N. Ahmadabadi, Materials Characterization 61 (2010) 689

-[6] M. Abedini, H.M. Ghasemi, M.N. Ahmadabadi, Materials Science and Technology 26 (2010) 285

-[7] Y. Shida, Y. Sugimoto, Wear 146 (1991) 219

-[8] L. L. Ye, Z.G. Liu, K. Raviprasad, M. X. Quan, M. Umemoto, Z.Q. Hu, Mater. Sci. Eng.A 241 (1998) 290

-[9] A. Teray ama, H. Kyogoku, M. Sakamura, S. Komatsu, Mater. Trans. 47 (2006) 550

-[10] H.Z. Ye, R. Liu, D.Y. Li, R. Eadie, Scripta Mater., 41 (1999) 1039

-[11] Y.C. Luo, D.Y. Li, Journal of Materials Science, 36 (2001) 4695

-[12] X. Hua, Y.F. Zheng, Y.X. Tong, F. Chen, B. Tian, H.M. Zhou, L. Li, Materials Science and Engineering: A 623 (2015) 1

- [13] T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, J. Mater. Res., 13 (1998) 2445

-[14] H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Carbon, 47 (2009) 570

-[15] W.A. Curtin, B.W. Sheldon, Mater. Today 7 (2004) 44

-[16] E.T. Thostenson, Z.F. Ren, T.W. Chou, Compos. Sci. Technol., 61 (2001) 1899

-[17] W.X. Chen, J.P. Tu, L.Y. Wang, H.Y. Gan, Z.D. Xu, X.B., Zhang Carbon, 41 (2003) 215

-[18] S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, S.H. Hong, Adv. Mater., 17 (2005) 1377

-[19] D.H. Nam, S.I. Cha, B.K. Lim, H.M. Park, D.S. Han, S.H. Hong, Carbon, 50 (2012) 2417

-[20] K.T. Kim, S. Il Cha, S.H. Hong, S.H., Mater. Sci. Eng. A – Struct., 430 (2006) 27

-[21] Y.J. Jeong, S.I. Cha, K.T. Kim, K.H. Lee, C.B. Mo, S.H., 3 (2007) 840

-[22] X. Feng, J.H. Sui, W. Cai, A.L. Liu, Scr. Mater., 64 (2011) 824

-[23] X. Feng, J.H. Sui, W. Cai, J. Compos. Mater., 45 (2011) 1553

-[24] Yeon-wook Kim , Materials Letters162 (2016) 1

Downloads

Published

2017-07-15

Issue

Section

Articles

How to Cite

Single walled carbon nanotubes reinforced intermetallic TiNi matrix nanocomposites by spark plasma sintering. (2017). Experimental and Theoretical NANOTECHNOLOGY, 1(3), 145-159. https://doi.org/10.56053/1.3.145