Solid phase microextraction based micro-device for extraction of PCR amplifiable DNA

Authors

  • G. Samla Department of Electrical, Electronic& Systems Engineering, Universiti Kebangsaan Malaysia, Selangor, Malaysia Author
  • K. B. Gan Department of Electrical, Electronic& Systems Engineering, Universiti Kebangsaan Malaysia, Selangor, Malaysia Author
  • S. M. Then Faculty of Medicine & Health Sciences, University of Nottingham Malaysia Campus, Selangor, Malaysia Author

DOI:

https://doi.org/10.56053/1.2.81

Keywords:

Extraction, Whole blood, Micro-device

Abstract

Deoxyribonucleic acid (DNA) extraction or sample preparation from biological sample (whole blood) for downstream process on microfluidic platform has been widely studied due to its crucial role in clinical diagnostic and genetic analysis. Sample preparation can be complicated since blood comprises complex matrices and repeated blood pricking from patients can be affected their health. Thus, introduction of solid-phase microextraction (SPME) method would be suitable to isolate, fractionate and concentrate the analyte from complex sample matrices and implemented on microfluidic device with small amount of sample. SPME is an effective sample preparation method by chemical lysis followed by purification mostly by using silica-based platform developed based on direct absorption into silica resins and desorption of analyte from silica resins.

References

-[1] A. Manz, N. Graber, H. M. Widmers, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sensors and Actuators B: Chemical, 1 (1990) 244

-[2] Y. Shi, P. C. Simpson, J. Scherer, D. Wexler, C. Skibola, M. Smith, A. Mathies, Radial Capillary Array Electrophoresis Microplate and Scanner for High-Performance Nucleic Acid Analysis, Anal. Chem. 71 (1999) 5354

-[3] A. G Hadd, S. C. Jacobson, J. M Ramsey, Microfluidic Assays of Acetylcholinesterase Inhibitors, Analytical Chemistry, 71 (1999) 5206

-[4] C. L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 62 (1990) 2145

-[5] X. Chen, D Cui, H. Cai, H. Li, J. Sun, L. Zhang, MEMS-Based Micro-device for Cell Lysis and DNA Extraction, Microelectro-mechanical Systems and Devices, InTech, (2012)

-[6] P. L. Kole, G. Venkatesh, J. Kotecha, R. Sheshala, Recent advances in sample preparation techniques for effective bioanalytical methods, Biomedical Chromatography, 25 (2011) 199

-[7] H. Gika, G. Theodoridis, Bioanalysis 3 (2011) 1647

-[8] H. Kataoka, K. Saito, Recent advances in SPME techniques in biomedical analysis, J. Pharm. & Biomed. Anal. 54 (2011) 926

-[9] J. P. Landers, M. C. Breadmore, K.A. Wolfe, I. G. Arcibal, W. K. Leung, D. Dickson, B. C. Giordano, M.E. Power, J. P. Ferrance, S. H. Feldman, P. M. Norris, Microchip-based Purification of DNA from Biological Samples, Anal. Chem. 75 (2003)1880

-[10] A. Spietelun, L. Marcinkowski, M. de la Guardia, J. Namiesnik, T. Marcinkowski, Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry, J. Chrom. A 1321 (2013)1

-[11] J. Pawliszyn, Theory of Solid-Phase Microextraction, Journal of Chromatographic Science 38 (2000) 270

-[12] D. Vuckovic, X. Zhang, E. Cudjoe, J. Pawliszyn, Solid-phase microextraction inbioanalysis: new devices and directions. J. Chrom. A. 1217 (2010) 4041

-[13] L. A. Christel, K. Petersen, W. McMillan, M. A. Northrup, Rapid Automated Nucleic Acid Probe Assays Using Silicon Microstructures for Nucleic Acid Concentration, Transactions of the ASME 121 (1999) 22

-[14] O. Bisi, S. Ossicini, P. Pavesi, Porous Silicon: a Quantum Sponge Structure for Silicon based Optoelectronics, Surface Science Reports 38 (2000) 1

-[15] P. Schmuki, U. Schlierf, T. Herrmann, G. Champion, Pore Initiation and Growth on porous, Electrochimica Acta 48 (2003) 1301

-[16] H. A. Saleh, Z. Hassan, F. K. Yam, Physical properties of porous In0.08Ga0.92N, Int. J. Nanoelectronics and Materials 8 (2015) 33

-[17] K. A. Wolfe, M. C. Breadmore, J. P. Ferrance, M. E. Power, J. F. Conroy, P. M. Norris, J. P. Landers, Toward a Microchip-based Solid-Phase Extraction Method for Isolation of Nucleic Acids, Electrophoresis 23 (2002) 727

-[18] M. C. Breadmore, Wolfe Ka, I. G. Arcibal, W. K. Leung, D. Dickson, B. C. Giordano, J. Landers, Microchip-based purification of DNA from biological samples, Analytical Chemistry 75 (2003) 1880

-[19] C. Zhang, D. Xing, Single-Molecule DNA Amplification and Analysis Using Microfluidics, Chem. Rev. 110 (2010) 4910

-[20] F. Wang, M. Burns, Performance of nanoliter-sized droplet-based microfluidic PCR, Biomedical Micro-devices 11 (2009) 1071

-[21] J. Pawliszyn, Solid Phase Microextraction Theory and Practice, Wiley, New York, NY, (1997)

-[22] J. Pawliszyn, Kinetic model of Supercritical fluid extraction, J. Chromatogr. Sci. 31 (1993) 31

-[23] M. J. Bogusz, Forensic Science. Handbook of Analytical Separations 6 (2008) 63

-[24] Z. Mester and J. Pawliszyn, Rapid Commun. Mass Spectrom. 13 (1999) 1999

-[25] R. Eisert and J. Pawliszyn, Automated in-tube solid-phase microextraction coupled to high performance liquid chromatography, Anal. Chem. 69 (1997) 3140

-[26] Martos and J. Pawliszyn, Calibration of solid phase microextraction for an analyses based on physical chemical properties of the coating, Anal. Chem. 69 (1997) 206

-[27] J. Crank, Mathematics of Diffusion, Clarendon Press, Oxford, 1989

-[28] S. Risticevic, H. Lord, T. Gorecki, C. L. Arthur, J. Pawliszyn, Protocol for solid-phase microextraction method development, Nat. Protoc. 5 (2010) 122

-[29] D. Vuckovic, E. Cudjoe, D. Hein, J. Pawliszyn, Automation of solid-phase microextraction in high-throughput format and applications to drug analysis, Anal. Chem. 80 (2008) 6870

-[30] D. Vuckovic, E. Cudjoe, F. M. Musteata, J. Pawliszyn, Automated solid-phase microextraction and thin-film microextraction for high-throughput analysis of biological fluids and ligand-receptor binding studies, Nat. Protoc. 5 (2010) 140

-[31] Z. Altun, M. Abdel-Rehim, L.G BlombergJ. Chromatogr. B: Anal. Technol. Biomed Life Sci. 813 (2004) 129

-[32] C. Dietz, J. Sanz, C. Camara, Recent developments in solid-phase microextraction coatings and related techniques, J. Chromatogr. A. 1103 (2006) 183

-[33] H.L. Lord, R.P. Grant, M. Walles, B. Incledon, B. Fahie, J. Pawliszyn, Development and evaluation of a solid-phase microextraction probe -for in vivopharmacokineticstudies. Anal Chem 75 (2003) 5103

-[34] X. Zhang, A. Es-Haghi, J. Cai, J. Pawliszyn, Simplified kinetic calibration of solid-phase microextraction for in vivo pharmacokinetics, J. Chromatogr. A. 1216 (2009) 7649

-[35] H. Kataoka, Current Developments and Future Trends in Solid-phase Microextraction

Techniques for Pharmaceutical and Biomedical Analyses, Analytical Sciences : The International Journal of the Japan Society for Analytical Chemistry 27 (2011) 57

-[36] M. Ligor, T. Ligor, A. Bajtarevic, C. Ager, M. Pienz, M. Klieber, H. Denz, Fiegl, W. Hilbe, W. Weiss, P. Lukas, H. Jamnig, M. Hackl, B. Buszewski, W. Miekisch, J. Schubert, A. Amann, Clin. Chem. Lab Med. 47 (2009) 550

-[37] D. Vuckovic, I. Lannoy, B. Gien, Y. Yang, F. M. Musteat, R. Shirey, L. Sidisky, J. Pawliszyn, J. Chromatogr. A 1218 (2011) 3367

-[38] C. Bicchi, C. Cordero, E. Liberto, P. Rubiolo, B. Sgorbini, P. Sandra, J. Chromatogr. A 1148 (2007) 137

-[39] S. Riazanskaia, G. Blackburn, M. Harker, D. Taylor, C.L.P. Thomas, Analyst 133 (2008) 1020

-[40] C. Hasegawa, T. Kumazawa, X.P. Lee, A. Marumo, N. Shinmen, H. Seno, K. Sato, Anal. Bioanal. Chem. 389 (2007) 563

-[41] X. P. Lee, C. Hasegawa, T. Kumazawa, N. Shinmen, Y. Shoj, H. Seno, K. Sato, J. Sep. Sci. 31 (2008) 2265

-[42] L.G. Blomberg, Two new techniques for sample preparation in bioanalysis: microextraction in packed sorbent (MEPS) and use of a bonded monolith absorbent for sample preparation in polypropylene tips for 96-well plates, Anal. Bioanal. Chem. 393 (2009) 797

-[43] D. Vuckovic, J. Pawliszyn, Automated study of ligand–receptor binding using solid-phase microextraction, J. Pharm. Biomed. Anal. 50 (2009) 550

-[44] G. Merola, S. Gentili, F. Tagliaro, T. Macchia, Anal Bioanal. Chem. 397 (2010) 2987

-[45] M. Moller, K. Aleksa, P. Walasek, T. Karaskov, G. Koren, Forensic Sci. Int. 196 (2010) 64

-[46] C. Dizioli Rodrigues de Oliveira, M. Yonamine, M. Lucia de Moraea Moreau, J. Sep. Sci. 30 (2007) 128

-[47] N. C. Cady, S. Stelick, C. A. Batt, Nucleic acid purification using microfabricated silicon structures, Biosensors and Bioelectronics, 19 (2003) 59

-[48] J. Wen, L. A. Legendre, Purification of nucleic acids inmicrofluidic devices.Anal. Chem. 80 (2008) 6472

-[49] Q. Xiang, B. Xu, Miniature real time PCR on chip with multichannel fiber optical fluorescence detection module, Biomed. Micro-devices 9 (2007) 443

-[50] J. Pipper, M. Inoue, Catching bird flu in a droplet, Nat. Med. 13 (2007) 1259

-[51] J. Pipper, Y. Zhang, Clockwork PCR including sample preparation, Angew. Chem. Int. Ed. 47 (2008) 3900

-[52] Z. Yi, P. Seungkyung, Y. Samuel, W. Tza-Huei, An all-in-one microfluidic device for parallel DNA extraction and gene analysis, Biomed. Micro-devices 12 (2010) 1043

-[53] C. S. Zhang, J. L. Xu, PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 24 (2006) 243

-[54] L. Xu, Z. Jixi, G. Hongchen, Study on the Adsorption Mechanism of DNA with Mesoporous Silica Nanoparticles in Aqueous Solution, Langmuir, 28 (2012) 2827

-[55] P. Tyson, L. Santiago, A. Oveta Fullerb, J. Michael, J. Solomona, G. L. Ronald, Adsorption and elution characteristics of nucleic acids on silica surfaces and their use in designing a miniaturized purification unit, Anal. Biochem. 373 (2008) 253

-[56] E. Peter, D. Van, S. Jessica, Lin, J. Theodore, Zwang, N. Ali, S. Malkiat, Johal, N. Angelika, Multiphasic DNA Adsorption to Silica Surfaces under Varying Buffer, pH, and Ionic Strength Conditions, J. Phys. Chem. B. 116 (2012) 5661

-[57] H. Tian, A. Jaquins-Gerstl, N. Munro, M. Trucco, L.C Brody, J.P. Landers, Single-strand conformation polymorphism analysis by capillary and microchip electrophoresis: a fast, simple method for detection of common mutations in BRCA1 and BRCA2. Genomics 63 (2000) 25

-[58] H. Tian, A. F Hühmer, J. P Landers, Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format, Analytical Biochemistry 283 (2000) 175

-[59] J. Khandurina, T. E. McKnight, S. C. Jacobson, L. C. Waters, R. S. Foote, J. M. Ramsey, Integrated System for Rapid PCR-Based DNA Analysis in Microfluidic Devices, Analytical Chemistry, 72 (2000) 2995

-[60] E. T. Lagally, P. C. Simpson, R. A. Mathies, Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system, Sensors and Actuators, B: Chemical 63 (2000) 138

-[61] E. A. Schilling, A. E .Kamholz, P. Yager, Cell Lysis and Protein Extraction in a Microfluidic Device with Detection by a Fluorogenic Enzyme Assay, Anal. Chem. 74 (2002) 1798

-[62] P. Sethu, M. Anahtar, L. L. Moldawer, R. G. Tompkins, M. Toner, Continuous Flow Microfluidic Device for Rapid Erythrecyte Lysis, Anal. Chem. 76 (2004)6247

-[63] X. Chen, D. F. Cui, C. C. Liu, H Li, Microfabrication and Characterization of Porous Channels for DNA Purification, J. Micromech. Microeng. 17 (2007) 68

-[64] X. Chen, D. F. Cui, C. C. Liu, H. Y. Cai, Fabrication of Solid Phase Extraction DNA Chips based on Bio-Micro-electro-Mechanical System Technology, Chin J. Anal. Chem. 34 (2006) 433

-[65] R. Bilyalo, L. Stalmans, G. Beaucarn, R. Loo, M. Caymax M, J. Poortmans, J. Nijs, Porous Silicon as an Intermediate Layer for Thin-Film Solar Cell, Solar Energy Materials and Solar Cells 65 (2001) 477

-[66] M. Björkqvist, J. Salonen, J. Paski, E. Laine, Characterization of Thermally Carbonized Porous Silicon Humidity Sensor, Sensors and Actuators A 112 (2004) 244

-[67] E. Massera, I. Nasti, L. Quercia,I. Rea, G. Di-Francia, Improvement of Stability and Recovery Time in Porous-Silicon-based NO2, Sensor Sensors and Actuators B 102 (2004) 195

-[68] C. Melander, M. Bengtsson, H. Schagerlöf, F. Tjerneld, T. Laurell, L. Gorton, Investigation of Micro-Immobilised Enzyme Reactors Containing Endo-glucanases for Efficient Hydrolysis of Cellodextrins and Cellulose Derivative, Anal. Chimica Acta 550 (2005) 182

-[69] J. Y. Park, J. H. Lee, Characterization of 10 µm Thick Porous Silicon Dioxide Obtained by Complex Oxidation Process for RF Application, Materials Chemistry and Physics 82 (2003) 134

-[70] C. Steinhauer, A. Ressine, G. Marko-Varga, T. Laurell, C. A. K. Borrebaeck, C. Wingren, Biocompatibility of Surfaces for Antibody Microarrays: Design of Macroporous Silicon Substrates, Analytical Biochemistry 341 (2005) 204

-[71] H. M. Ji, V. Samper, Y. Chen, W.C. Hui, H. J. Lye, F. Mustafa, A. C. Lee, L. Cong, C. K. Heng, T.M Lim, Sensors and Actuators A 139 (2007) 139

-[72] J. H. Kim, B. G. Kim, H. Nam, D. E. Park, K. S. Yun, L. B. Yoon, J. You, E. Yoon, A disposable DNA sample preparation microfluidic chip for nucleic acid probe assay, IEEE, Micro Electro Mech. 55 (2002) 133

-[73] H. M. Ji, V. Samper, L. Yobas, Y. Chen, C. K. Heng, T. M. Lim Silicon-based microfilters for whole blood cell separation, in: µTAS 2006, -Tokyo, Japan, 323–325

-[74] C. L. Arthur, J. Pawliszyn, Protocol for solid-phase microextraction method development, Heather Lord, Nature protocols 5 (2010) 122

-[75] F. M. Musteata, J. Pawliszyn, In vivo sampling with solid phase microextraction, J. Biochem. Biophys.Met. 70 (2007) 181

-[76] W. C. Hui, L. Yobas, V. Samper, C. K. Heng, S. Liwa, JiHongmiao, Y. Chena, L. Cong, J. Li, T. Meng, Sensors and Actuators A 133 (2007) 335

-[77] J. Vasudev, Bailey, Z. Yi, Brian, Keeley, Y. Chao, L. Kristen, Pelosky, B. Malcolm, B. Stephen, Baylin, G. James, Herman, W. Tza-Huei, Single-Tube Analysis of DNA Methylation with Silica Superparamagnetic Beads, Clinical Chemistry, 56 (2010) 1022

-[78] Q. Cao, M. Mahalanabis, J. Chang, B. Carey, C. Hsieh, Microfluidic Chip for Molecular Amplification of Influenza A RNA in Human Respiratory Specimens, PLoS ONE 7 (2012) 33176

-[79] A. Emily, W. Oblath, H. Hampton, P.A. Jean, R. Michael, A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva, Lab Chip. 13 (2013) 1325

-[80] T. Nakagawa, J. Biotechnol. 116 (2005) 105

-[81] S. Agata, M. Łukasz, G. Miguel de la, N. Jacek, Recent developments and future trends in solid phase microextraction techniques towards green analytical, chemistry, Journal of Chromatography A 1321 (2013) 1

Downloads

Published

2017-04-15

Issue

Section

Articles

How to Cite

Solid phase microextraction based micro-device for extraction of PCR amplifiable DNA. (2017). Experimental and Theoretical NANOTECHNOLOGY, 1(2), 81-96. https://doi.org/10.56053/1.2.81