Effect of annealing temperature on the optical and electrical properties of Mg doped TiO2 thin films

Authors

  • M. Devi Electroceramics lab, Department of Physics, KIIT University, Bhubaneswar-751024, India Author
  • Manas R. Panigrahi Electroceramics lab, Department of Physics, KIIT University, Bhubaneswar-751024, India Author

DOI:

https://doi.org/10.56053/1.2.69

Keywords:

Modified sol-gel route, Optical properties, Electrical properties

Abstract

In order to achieve high conductivity and transmittance of transparent conducting oxide (TCO), we attempted to fabricate Mg doped TiO2 (Mg0.01Ti0.99O2) thin films and characterized them for their structural and optical properties. The materials is prepared by modified sol-gel route. Mg0.01Ti0.99O2 thin films have been deposited on glass substrate by doctor's blade technique. The structure of the films was confirmed to be tetragonal and particle size were estimated to be ≈11.1 nm from XRD analysis. The optical property study in the same range shows higher value of absorbance in comparison to the pure TiO2 film after the wavelength 425 nm. The band gap is estimated to be much lower than pure TiO2 (3.2 eV).  So, the study shows that doping a small amount of Mg can enhance the visible light absorption in the epitaxial thin film which can be a suitable material for use in solar cell to trap the solar-radiation.

References

-[1] M.R. Hoffmann, S.T. Martin, W. Choi, D. W. Bahnemanns, Chem. Rev 95 (1995) 69

-[2] M. A. Fox and M. T. Dulay, Chem. Rev 93 (1993) 341

-[3] A. J. Maira, K. L. Yeung, C. Y. Lee, P. L. Yue, C. K. Chan, Catalysts J. Catal 192 (2000) 185

-[4] B. O' Regan and M. Gratzel, Nature, 353 (1991) 737

-[5] A.V. Emeline, V. N. Kuznetsov, V. K. Rybchuk, N. Serpone, International Journal of Photo energy 258394 (2008) 258394

-[6] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Lett 81 (2002) 454

-[7] E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, V. M. Visca, J. Am. Chem. Soc 2996 (1982) 14104

-[8] K. L. Choy, Prog. Mater. Sci. 48 (2003) 164

-[9] A. Goossens, J. Schoonman, J. Electrochem. Soc. 144 (1997) 1723

-[10] R. W. Seigel, E. H. Hu and M. C. Roco, WTEC panel Report on R & D Status and Trend in nanoparticales Nanostructured Material, Nanodevices, Workshop, (1997).

-[11] D. Szezuko, J. Werner, S. Oswald, G. Behr K. Wetzing, Appl. Surf Sci 179 (2001) 301

-[12] Y. Cao, W .Yang, W. Zhang, G. Liub, New. J. Chem 2 (2004) 218

-[13] W. Choi, A. Termin, M. R. Hoffmann, J. Phys. Chem. B 98 (1994) 13669

-[14] A. J. Gjazai, H. A. Hassan, Z. Hassan and A. SH. Hussein, Int. J. Nanoelectronics and Materials 6 (2013) 113

-[15] T. Nikolay, L. Larina, O. Shevaleevskiyb, B. Tae Ahn, Energy Environ. Sci 4 (2011) 1480

-[16] J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, H. Yu and G. Fang, Applied Physics Letters 106 (2015) 121104

-[17] K.Manseki, I.Ikeya, A.Tamura, T.Ban, T.Suqiura and T.Yoshida, RSC Advances 4 (2014) 9652

-[18] M. A. Behnajady, B.Alizade and N. Modirshahla, Photochemistry and Photobiology 87 (2011) 1308

-[19] T. Siva Rao, T. Abdo Segne, T. Susmitha, A. BalaramKiran, and C. Subrahmanyam, Advances in Materials Science and Engineering 168780 (2012) 168780

-[20] G. Ruani, C. Ancora, F. Corticeilli and C. Dionigi, Solar Energy Materials and Solar Cells 92 (2008) 537

-[21] A. S. Kontos, A. G. Kontos, D. S. Tsoukleris etal., J. Mater. Process. and Tech. 196 (2008) 243

-[22] S. Chen, J. H. Yang, X. G. Gong, Y. Yan, S. H. Wei, Appl. Phys. Lett 96 (2010) 221901

-[23] T. Van Nam, N. T. Trang and B. T. Cong, VNU Journal of Science, Mathematics - Physics 28 (2012) 84

-[24] J. G. Ma, Cai-Rong Zhang , Ji-Jun Gong and You-Zhi Wu etal., Materials, 8 (2015) 5508

-[25]L. Zhang, D. Ouyang, and C. Mo, Nanostr. Mat. 8 (1997) 1991

-[26] M. F. Alias, E. M. N. Al-Fawade and S. K. J. Ali-Ani, Int. J. Nanoelectronics and Materials 4 (2011) 101

-[27] S. Kausar, S. Joshi and A. Srivastava, Int. J. Nanoelectronics and Materials 7 (2014) 77

-[28] M. Sreemany, A. Bose, S. Sen, Physica B 405 (2010) 85

-[29] H. Yang, X. Zhang, Q. Tao, A. Tang, J. Optoelectr. Advanc. Mater. 9 (2007) 2493

-[30] K. Reddy, S. Manorama, A. Reddy, Mater. Chem. Phys 78 (2002) 239

-[31] C. H. Kwon, H. Shin, J. H. Kim, W. Schoi and K. H. Moon, Mater. Chem. Phys. 84 (2004) 78

-[32] C. S. Kim, B. K. Moon, J. H. Park and S. T. Chung, J. Cryst. Growth 254 (2003) 405

-[33] Y. U. Kolenko, A. A. Burukhin and B. R. Cheraglove, Mater. Lett. 57 (2003) 1124

-[34] S. C. Jain, D. J. Roulston, Solid-State Electron 34 (1991) 453

-[35] G. Mahan, J. Appl. Phys. 51 (1980) 2634

-[36] M. Devi, M. R. Panigrahi, U.P.Singh, J. Mater Sci: Mater Electron 26 (2015) 1186

-[37] C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier (1995)

-[38] C. V. Ramana, O. M. Hussain, B. S. Naidu, and P. J. Reddy, Thin Solid Films 219 (1997) 305

-[39] A. Talledo and C. G. Granqvist, J. Appl. Phys. 77 (1995) 4655

-[40] C.V. Ramana, R.J. Smith, O.M. Hussian, Phys. Stat. Sol. (A) 1 (2003) 199

Downloads

Published

2017-04-15

Issue

Section

Articles

How to Cite

Effect of annealing temperature on the optical and electrical properties of Mg doped TiO2 thin films. (2017). Experimental and Theoretical NANOTECHNOLOGY, 1(2), 69-79. https://doi.org/10.56053/1.2.69