Optical properties of manganese chiral single ring by glancing angle deposition technique

Authors

  • Mahsa Fakharpour Islamic Azad University, Meybod Branch, Meybod, Iran Author

DOI:

https://doi.org/10.56053/1.1.31

Keywords:

Reflection, Transmission, Absorption, Refractive index

Abstract

Embracing physical vapor deposition system, GLAD method defines the deposition angle, α, in terms of vapor flux and normal substrate. The substrate rotation angle, φ, defines the azimuthal substrate position relative to an arbitrary starting position. We have fabricated periodic nanostructure through utilizing GLAD to control the film deposition conditions over these arrays. Manganese chiral single ring nanostructure have been created using oblique angle deposition method in conjunction with rotation of normal surface substrate. Employing AFM measurement and J-Microvision software, we obtained structure morphology, the size of grains, surface physical roughness and surface void fraction. The optical spectra of the samples were obtained using a single beam spectrophotometer for the incident light of the surface normal. Moreover, it should be mentioned here that Fresnel formulas and experimental measurements of reflectance and absorption spectra could be applied to obtain the refractive index n and the absorption index k. Since Manganese chiral single ring of fabricated nanostructure with GLAD technique is porous, the plot of the refractive index that was observed as a function of the wavelength index aspect has lower values in comparison with homogeneous Manganese thin film associated with longer wavelengths. Therefore, we can control the refractive index of nanostructure with regard to the film density and porous. It is suggested that GLAD may offer an effective method to attain tailor able refractive index.

References

-[1] T. Tran, T. Nguyen; Controlled growth of uniform noble metal nanocrystals: Aqueous-based synthesis and some applications in biomedicine, Colloids and Surfaces B: Biointerfaces 88 (2011) 1

-[2] P. K. Jain, K. S. Lee, I. H. El-Sayed and M. A. El-Sayed; Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine, J. Phys. Chem. B 110 (2006) 7238.

-[3] A. Mahapatro; Bio-functional nano-coatings on metallic biomaterials, Materials Science and Engineering: C 55 (2015) 227

-[4] Z. Karimi, L. Karimi, H. Shokrollahi; Nano-magnetic particles used in biomedicine: Core and coating materials, Materials Science and Engineering: C 33 (2013) 2465

-[5] J. Arul Mary, J. Judith Vijaya, L. John Kennedy, M. Bououdina; icrowave-assisted synthesis, characterization and antibacterial properties of Ce–Cu dual doped ZnO nanostructures, Optik - International Journal for Light and Electron Optics 45 (2015) 56

-[6] K. Ashtari, J. Fasihi, N. Mollania, K. Khajeh; A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity, Materials Research Bulletin 50 (2014) 348

-[7] S. Pal, Y. K. Tak and J. M. Song; Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli, J. M. Appl. and Env. Mic. 73 (2007) 1712

-[8] Tariq Jan, Javed Iqbal , Muhammad Ismail, Noor Badshah, Qaisar Mansoor, Aqsa Arshad, Qazi M. Ahkam; Synthesis, physical properties and antibacterial activity of metal oxides nanostructures, Materials Science in Semiconductor Processing 21 (2014) 154

-[9] N. M. Ahmed, Z. Sauli, U. Hashim, Y. Al-Douri; Investigation of the absorption coefficient, refractive index, energy band gap, and film thickness for Al0.11Ga0.89N, Al0.03Ga0.97N, and GaN by optical transmission method, International Journal of Nanoelectronics and Materials 2 (2009) 189

-[10] H. Nadir, M. Khudheir, R. Hayfa, M. Hazim ; Electric field distribution in weakly absorbing monolayer at oblique incidence of light, International Journal of Nanoelectronics and Materials 6 (2013) 87

- [11] Z. Y. Zhang, Y. P. Zhao; Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method, Appl. Phys. Lett. 90 (2007) 221501

-[12] M. Wan , M. Tian, S. Yuan, X. Sun, J.He; Surface plasmon modes of infinite cylindrical metallic nanostructures, Optik - International Journal for Light and Electron Optics 124 (2015) 7036

-[13] J. Z. Zhang and C. Noguez; Plasmonic Optical Properties and Applications of Metal Nanostructures, Plasmonics 3 (2008) 127

-[14] Z. Y. Zhang and Y. P. Zhao; Optical properties of helical Ag nanostructures calculated by discrete dipole approximation method, Appl. Phys. Lett. 90 (2007) 221501

-[15] M. Akhlaghi; Optimization of the plasmonic nano-rods-based absorption coefficient using TLBO algorithm, Optik - International Journal for Light and Electron Optics 126 (2015) 5033

-[16] Z. Wang, X. Quan, Z. Zhang, P. Cheng; Numerical studies on absorption characteristics of plasmonic metamaterials with an array of nanoshells, International Communications in Heat and Mass Transfer 68 (2015) 172

- [17] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz; The Optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B 107 (2013) 57

-[18] N. O. Young and J. Kowal, Nature (London) 183 (1959) 104

-[19] T. Motohiro and Y. Taga, Appl. Opt. 28 (1989) 2466

-[20] K. Robbie and M. J. Brett, J. Vac. Sci. Technol. A 15 (1997) 1460

-[21] A. C. van Popta, J. C. Sit, and M. J. Brett, Appl. Opt. 43 (2004) 3632

-[22] Z. Y. Zhang and Y. P. Zhao, Appl. Phys. Lett. 90 (2007) 221501

-[23] Z. Y. Zhang and Y. P. Zhao, APP. Phys. 104 (2008) 013517

-[24] L. Eckertova, Physics of Thin Films, chapter 1, Plenum Press, 2nd edition, (1990)

-[25] H. Savaloni, F. Babaei, S. Song, and F. Placido; Characteristics of sculptured Cu thin films and their optical properties as a function of deposition rate, App. Sur. Sci. 255 (2009) 8041

-[26] H. Savaloni, surface Science of Nanotechnology, Vol. 1, pp. 2671, University of Tehran Press, (2005)

-[27] M.M. El-Nahass, A.A.M. Farag, A.A. Atta, Synth. Met. 159 (2009) 589

-[28] P.P. Banerjee, Proc. IEEE 73 (2005) 1859

-[29] C. Pecharroman, E. D. Gaspera, A. Martucci, R. E. Galindod, P. Mulvaney, J. Phy. Chem. C 119 (2015) 9450

-[30] N. D. Singho, N. A. C. Lah, M. R. Johan, R. Ahmad, IJRET 1 (2012) 4

-[31] O. Carton, J. Ghaymouni, M. Lejeune, A. Zeinert, Journal of Spectroscopy 2013 (2013) 564

-[32] A. Siabi-Garjan, H. Savaloni, " Extinction spectra and electric near-field distribution of Mn nano-rod based sculptured thin films: experimental and discrete dipole approximation results," Journal of Optics 2013 (2013) 45

-[33] Araz Siabi-Garjan, Hadi Savaloni, Extinction spectra and electric field enhancement of silver chiral nano-flower shaped nanoparticle; comparison of discrete dipole approximation results with experimental results" Eur. Phys. J. B 86 (2013) 257

-[34] S. Wang, G. Xia, H. He, K. YI, J. Shao, Z. Fan, Alloys and Compounds 431 (2007) 286

-[35] S. Wang, X. Fu, G. Xia, J. Wang, J. Shao, Z. Fan, App. Surf. Sci. 252 (2006) 8734

-[36] E.D. Palik, Handbook of Optical Constants of Solids, Academic, New York (1985)

Downloads

Published

2017-01-15

Issue

Section

Articles

How to Cite

Optical properties of manganese chiral single ring by glancing angle deposition technique. (2017). Experimental and Theoretical NANOTECHNOLOGY, 1(1), 31-39. https://doi.org/10.56053/1.1.31