Tunable carbon quantum dots from starch via microwave assisted carbonization

Authors

  • L. A. Adams Department of Chemistry, University of Lagos, Lagos, Nigeria Author
  • K. A. Fagbenro-Owoseni Department of Chemistry, University of Lagos, Lagos, Nigeria Author

DOI:

https://doi.org/10.56053/1.1.13

Keywords:

Carbon quantum dots, Semiconductor, Microwave, Luminescence

Abstract

Tunable luminescence carbon dots (C-dots) were prepared through microwave-assisted carbonization of aqueous starch suspension mediated by sulfuric and phosphoric acids respectively as surface passivating agents. The as-prepared C-dots showed green, blue and yellow luminescence under 365nm UV light. The C-dots were further characterized by UV-Vis, FTIR, and band gap determination. Fourier transform infrared spectroscopy (FTIR) studies revealed bands at 3460 cm-1 (OH), 2979 cm-1 1708 cm-1 (C=O), 1188 and 1040cm-1 (C-O), and 1397 cm-1 (C=C) indicative of the graphitic nature of the carbon. The UV-Vis showed blue shifted absorption bands, while the band gap calculated revealed narrow sizing of the C-dots in the semiconductor range. The results suggest that this approach may serve as a facile route to colour tunable photoluminescent C-dot materials with potential biological applications.

References

-[1] K. H. Fujioka, M. lruoka, K. Sato, N. M. Manabe, R. lyasaka, S. Hanada, A. Hoshino, R. D. Tilley, Y. Manome, K. Y. Hirakuri, K. Amamoto, Nanotech. 19 (2008) 415102.

-[2] L. Xiangyou, W. Hongqiang, S. Yoshiki, P. Alexander, K. Kenji, K. Naoto, Chem. Commun. 47 (2011) 932.

-[3] J. Lovric, H. S. Bazzi, Y. Cuie, G. R. A. Fortin, F. M. Winnik, D. Maysinger, J. Molecul. Med. 83 (2005) 377.

-[4] X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 126 (2004) 12736.

-[5] S. N. Baker, G. A. Baker, Angew. Chem. Int. Ed. 49 (2010) 6726.

-[6] W. Yosufu, H. Aiguo, J. Mater. Chem. C 2 (2014) 6921.

-[7] S. C. Ray, A. Saha, N. R. Jana, R. Sarkar, Journal of Physical Chemistry C 113 (43) (2009) 18546.

-[8] A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E. P. Giannelis, Small 4 (2008) 455.

-[9] Y. Jin-nouchi, T. Hattori, Y. Sumida, M. Fujishima, H. Tada, Chemphyschem. 11 (2010) 3592.

-[10] F.A. Kassim, M.A Mahdi, J.J. Hassan, S.K.J. Al-Ani, S.J. Kasim. Int. J. Nanoelectronics and Materials 5 (2012)57.

-[11] L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, J. Am. Chem. Soc. 131 (2009) 4564.

-[12] L. Cao, X. Wang, M. J. Meziani, F. S. Lu, H. F. Wang, P. J. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca, D. Murray, S. Y. Xie, Y. P. Sun, J. Am. Chem. Soc. 129 (2007) 11318.

-[13] A. Yamilov, M. R. Herrera, M. F. Bertino, Nanotech. 18 (2007) 315603.

-[14] Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B, A. Harruff, X. Wang, H. F. Wang, P. J. G. Luo, H. Yang, M. E. Kose, B. L. Chen, L. M. Veca, S. Y. Xie, J. Am Chem. Soc. 128 (2006) 7756.

-[15] H. Zhu, X. L. Wang, Y. L. Li, Z. J. Wang, F. Yang, X. R. Yang, Chem. Commun. 34 (2009) 5118.

-[16] Y. M. Long, C. H. Zhou, Z. L. Zhang, Z. Q. Tian, L. Bao, Y. Lina, D. W. Pang, J. Mater. Chem. 22 (2012) 5917.

-[17] S. Sahu, B. Behera, T. Maiti, S. Mohapatra, Chem. Commun. 48 (70) (2012) 8835.

-[18] H. Liu, T. Ye, C. Mao, Angew. Chem. Int. Ed. 46 (2007) 6473.

-[19]. M. S. Palashuddin, A. Jaiswal, A. Paul, S.S. Ghosh, A. Chattopadhyay, Scientific Reports 2 (2012) 383.

-[20] W. B. Lu, X. Y. Qin, S. Liu, G. H. Chang, Y. W. Zhang, Y. L. Luo, A. M. Asiri, A. O. Al

Youbi, X. P. Sun, Anal. Chem. 84 (2012), 5351.

-[21] X. Jia, J. Li, E. Wang, Nanoscale 4 (2012) 5572.

-[22] S. N. Qu, X. Y. Wang, Q. P. Lu, X. Y. Liu and L. J. Wang , Angew. Chem. Int. Ed. 51(2012) 12215.

-[23] Q. Wang, X. Liu, L. C. Zhang and Y. Lv, Analyst 137 (2012) 5392.

-[24] D. L. Xiao, D. H. Yuan, H. He and J. R. Lu, Luminescence 28 (2013) 612.

-[25] N. Na, T. T. Liu, S. H. Xu, Y. Zhang, D. C. He, L. Y. Huang and J. Ouyang, J. Mater. Chem. B 1 (2013) 787.

-[26] S. Chandra, P. Das, S. Bag, D. Laha and P. Pramanik, Nanoscale 3 (2011) 1533.

-[27] N. Puvvada, B. N. P. Kumar, S. Konar, H. Kalita, M. Mandal and A. Pathak, Sci. Technol.

Adv. Mater. 13 (2012) 045008.

-[28] H. Li, H. Ming, Y. Liu, H. Yu, X. He, H. Huang, K. Pan, Z. Kang,S-T. Lee, New J. Chem. 35 (2011) 2666.

-[29] W. Kwon, S. Do, S. W. Rhee, RSC Adv. 2 (30) (2012) 11223.

-[30] T. Sakaki, M. Shibata, T. Miki, H. Hirosue, N. Hayashi, Bioresource Tech. 58 (1996) 197.

-[31] B. Chen, F. Li, S. Li, W. Weng, H. Guo, T. Guo, X. Zhang, Y. Chen, T. Huang, X. Hong,S.

You, Y. Lin, K. Zeng, S. Chen, Nanoscale 5 (2013) 1967.

-[32] X. Sun, Y. Li, Angew Chem. Int. Ed. 43 (2004) 597.

-[33] J. Ryu, Y. W. Suh, D. J. Suh, D. J. Ahn, Carbon 48 (2010) 1990.

-[34] R. C. M. De Paula, J. F. Rodrigues, Carbohydr. Polym. 26 (1995) 177.

-[35] X. Zi-Qiang, Y. Li-Yun, F. Xiao-Yang, J. Jian-Cheng, M. Jie, P. Wu, J. Feng-Lei, X. Qi, L.

Yi, Carbon 66 (2014) 351.

-[36] Y. Wang, A. Hu J. Mater. Chem. C 2 (2014) 6921.

-[37] D. Yongqiang, P. Hongchang, B. Y. Hong, G. Chunxian, S. Jingwei, C. Yuwu, M. L. Chang, Y. Ting, Angew. Chem. Int. Ed. 52 (2013) 7800.

-[38] S.B. Rana, A. Singh, S. Singh, Int. J. Nanoelectronics and Materials. 6 (2013) 45.

-[39] U.I. Gaya. Heterogeneous Photocatalysis using inorganic semiconductor solids, Springer (2014).

-[40] J. Dharma, A. Pisal Simple Method of Measuring the Band Gap Energy Value of TiO2 in the Powder Form using a UV/Vis/NIR Spectrometer. PerkinElmer Inc. USA (2009).

Downloads

Published

2017-01-15

Issue

Section

Articles

How to Cite

Tunable carbon quantum dots from starch via microwave assisted carbonization. (2017). Experimental and Theoretical NANOTECHNOLOGY, 1(1), 13-21. https://doi.org/10.56053/1.1.13