Analysis and characterization of molybdenum-doped cadmium oxide

Authors

  • M. Tadres Departamento de Física, Universidad Iberoamericana, Santa Fé 012100, DF, México Author

DOI:

https://doi.org/10.56053/8.1.11

Keywords:

Cu2CdSnS4, Nanostructures, Optical; Structural, Electrical

Abstract

Molybdenum-doped cadmium oxide films were prepared by a spray pyrolysis technique at substrate temperature of 300 °C. The effect of doping on structural, electrical and optical properties were studied. X-ray analysis shows that the undoped CdO films are preferentially oriented along the (111) crystallographic direction. Molybdenum doping concentration increases the films’ packing density and reorients the crystallites along the (200) plane. A minimum resistivity of 4.68 10−4 Q cm with a maxi- mum mobility of 75 cm2 V−1 s−1 is achieved when the CdO film is doped with 0.5 wt.% Mo. The band-gap value is found to increase with doping and reaches a maximum of 2.56 eV for 0.75 wt.% as compared to undoped films of 2.2 eV.

References

-[1] B.G. Lewis, D.C. Paine, Mater. Res. Soc. Bull. 25, 22 (2000)

-[2] H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi,

-[3] H. Murata, Z.H. Kafafi, D.B. Chrisey, J. Appl. Phys. 86, 6451 (1999)

-[4] J.A.A. Selvan, A.E. Delahoy, S. Guo, Y.-M. Li, Sol. Energy Mater. Sol. Cells 90, 3371 (2006)

-[5] A. Chowdhuri, P. Sharma, V. Gupta, K. Sreenivas, K.V. Rao, J. Appl. Phys. 92, 2172 (2002)

-[6] S.K. Das, G.C. Morris, J. Appl. Phys. 73, 782 (1993)

-[7] A. Indluru, T.L. Alford, J. Appl. Phys. 105, 123528 (2009)

-[8] B. Saha, R. Thapa, K.K. Chattopadhyay, Sol. Energy Mater. Sol. Cells 92, 1077 (2008)

-[9] Y. Yang, S. Jin, J.E. Medvedeva, J.R. Ireland, A.W. Metz, J. Ni,

-[10] M.C. Hersam, A.J. Freeman, T.J. Marks, J. Am. Chem. Soc. 127, 8796 (2005)

-[11] R.R. Salunkhe, D.S. Dhawale, T.P. Gujar, C.D. Lokhande, Mater. Res. Bull. 44, 364 (2009)

-[12] C. S. da Laz, A. D. A. dos Santos, D. R. Izario, Exp. Theo. NANOTECHNOLOGY 3 (2019) 245

-[13] D.B. Devedov, R.J. Asherov, G.H. Glenko, N.O. Ferstaloya, Exp. Theo. NANOTECHNOLOGY 3 (2019) 253

-[14] H.F. Liu, S.J. Chua, G.X. Hu, H. Gong, N. Xiang, J. Appl. Phys. 102, 83529 (2007)

-[15] M. Yan, M. Lane, C.R. Kannewurf, R.P.H. Chang, Appl. Phys. Lett. 78, 2342 (2001)

-[16] D.R. Kammler, T.O. Mason, D.L. Young, T.J. Coutts, D. Ko, K.R. Poeppelmeier, D.L. Williamson, J. Appl. Phys. 90, 5979 (2001)

-[17] Z. Zhao, D.L. Morel, C.S. Ferekides, Thin Solid Films 413, 203 (2002)

-[18] A.A. Al Quraini, C.H. Champness, in Proc. 26th IEEE Photo- voltaic Specialists Conf., Anaheim, CA (1995), p. 415

-[19] T. Duńvki, V. Saryviak, Exp. Theo. NANOTECHNOLOGY 3 (2019) 269

-[20] P.M.R. Kumar, C.S. Kartha, K.P. Vijayakumar, J. Appl. Phys. 98, 023509 (2005)

-[21] F. Koffyberg, Phys. Rev. B 13, 4470 (1976)

-[22] Dalila MEKAM, Dalila MESRI, Habib. Rozale, Exp. Theo. NANOTECHNOLOGY 3 (2019) 281

-[23] T.S. Moss, Proc. Phys. Soc. B 67, 775 (1954)

-[24] M.A. Flores, R. Castanedo, G. Torres, O. Zelaya, Sol. Energy Mater. Sol. Cells 93, 28 (2009)

Downloads

Published

2024-01-15

Issue

Section

Articles

How to Cite

Analysis and characterization of molybdenum-doped cadmium oxide . (2024). Experimental and Theoretical NANOTECHNOLOGY, 8(1), 11-16. https://doi.org/10.56053/8.1.11