The effect of additives on behavior of the high temperature LaxY1-xBa2Cu3O7-δ superconductor
DOI:
https://doi.org/10.56053/1.1.1Keywords:
High temperature superconductor, LaxY1-xBa2Cu3O7-δ, X-ray diffraction, Resistivity measurement, Critical temperatureAbstract
A series of ceramic superconductor compounds with the composition LaxY1-x Ba2Cu3O7-δ are prepared by solid state reaction from the principle routs like La2O3, BaCO3 and CuO with high purity 99.99%. Different measurement is made to show the improvement in high phase superconductor such as resistivity measurement and the X-ray diffraction (XRD). When (x=0.20 and 0.80; x=0.40 and 0.60) an orthorhombic phase is appeared with lattice constants (a= 3.844 Å, b=3.912 Å, c=11.839 Å) and (a= 3.871 Å, b=3.881 Å, c=11.748Å), respectively. This emphasizes the formation of a high temperature superconducting phase. At x=0.5 a phase is changed to a tetragonal where the superconductivity is lost. From the resistivity measurement, the highest (Tc) value is found equals to (97K) for (x=0.20 and x=0.80) comparable with the YBCO-compound which does not normally exhibited Tc-value greater than (95K). The increase in Tc-value may be attributed to the amount of (La) and / or the oxygen content in the mixture which both influence the properties of the compound and are essential for the superconductivity phase.
References
-[1] G. Bednorz, K.A. Muller, Zeitschrift für Physik B 64 (1986) 189
-[2] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Q. Huang, C.W. Chu,Physical Review Letter 58 (1987) 908
-[3] A. Schilling, M. Cartoni, J. Guo, H.R. Ott, Nature 363 (1993) 56
-[4] B. Seeber, Handbook of Applied Superconductivity, OIP Publishing, Bristol (1998)
-[5] M. Chen, L. Donzel, M. Lakner, W. Paul, Journal of the European Ceramic Society 24 (2004) 1815
-[6] T. Masuda, Y. Ashibe, M. Watanabe, C. Suzawa, K. Ohkura, Hirose, Y. Takahashi, Physica C 372-376 (2002) 1580
-[7] J.P. Stovall, J.W. Lue, J.A. Demko, P.W. Fisher, M.J. Gouge, R.A. Hawsey, J.W.
Armstrong, R.L. Hugehy, J.C. Tolbert, Advances in Cryogenic Engineering 47 (2002) 591
-[8] D. Willen, F. Hansen, M. Daumling, C.N. Rasmussen, C. Traeholt, S.D. Mikkelsen,
Physica C 372-376 (2002) 1571
-[9] R. Schlosser, M. Meinert, M. Leghissa, Ieee Transactions on Applied Superconductivity 2 (2003) 2348
-[10] P.G. Therond, C. Levillain, J.F. Picard, B. Bugnon, H. Zeuger, S. Hornfeldt, T. Fogelberg,G. Papst, D. Bonmann, Proceding of 37th Cigre Session pp. 302 (1998)
-[11] M. Frank, J. Frauenhofer, P. van Hasselt, W. Nick, H.-W. Neumueller, G. Nerowski, Ieee Transactions on Applied Superconductivity 13 (2003) 2120
-[12] D. Madura, M. Richardson, D. Bushko, S. Kalsi, B. Gamble, The Applied Superconductivity Conference, Ieee (2002)
-[13] W. Paul et al. Superconductor Science & Technology 10 (1997) 914
-[14] W. Paul, M. Chen, M. Lakner, J. Rhyner, D. Braun, W. Lanz, Physica C 354 (2001) 27
-[15] R. Witzmann, W. Schmidt, R. Volkmar, ETG-Fachberichte Band 85 (2001) 393
-[16] D. S. Ginley, Tl-based HTSC films for microelectronic applications Thallium-Based High-Temperature Superconductors. Ed. A. M. Hermann and S. V Yakhmi (New York: Marcel Dekker) chapter 9 (1993)
-[17] A.P. Bramley, J. D. O’Connor, C. R. M. Grovenor, Supercond. Sci. Technol. 12 (1999) R57
-[18] H. Schneidewind, M. Manzel, G. Bruchlos, K. Kirsch, Supercond. Sci. Technol. 14 (2001) 200
-[19] S. Huber, M. Manazel, H. Bruchlos, S. Hensen, G. Muller, Physica C 244 (1995) 337
-[20] W. L. Holstein, L. A. Parisi, C. Wilker , R. B. Flippen, Appl. Phys. Lett. 60 (1992) 2014
-[21] Y. F. Chen, Z. G. Ivanov, E. A. Stepantsov, A. Ya. Tzalenchuk, S. Zarembinski, T. Claeson, L-G. Johansson, J. Appl. Phys. 79 (1996) 9221
-[22] W. L. Holstein, L. A. Parisi, Z-Y. Shen, C. Wilker, M. S. Brenner, J. S. Martens J. Supercond. 6 (1993) 191
-[23] A. Cassinese, A. Andreone, E. Di Gennaro, G. Pica, R. Vaglio, G. Malandrino, L. M. S. Perdicaro, I. L. Fragala, C. Granata, Supercond. Sci. Technol. 14 (2001) 406
-[24] M. Barra, A. Cassinese, I. Fragala, M. Kusunoki, G. Malandrino, T. Nakaggawa, L. Perdicaro, K. Sato, S. Oshima, R. Vaglio, Supercond. Sci. Technol. 15 (2002) 581
-[25] D. Face, M. Frank, J. Robert, B. Likie, S. Mark, W. Charles, IEEE Trans. Appl. Supercond. 9 (1999) 2492
-[26] D. S. Ginley, E. L. Venturini, C. P. Tigges, T. E. Zipperian, R. J. Baughman, J. C. Barbour, B. Morosin, Physica C 185 (1991) 2275
-[27] J. Xiaoping, Z. Xiaobiao, P. Dexing, Q. Hongbo, Y. Zhougjin, Y. Huafeng, Z. Xizhang, L. Shuzhi, Q. Guiwen; J. Phys. C, Solid state Physics 20 (1987) L533
-[28] R. Liang, M. Itoh, T. Nakamura and R. Aoki, Physica C 157 (1989) 83
-[29] T.C. Huang, Y. Tokura, J.B. Torrance, A.I. Nazzal and R. Karimi, Appl. Phys. Lett. 52 (1988) 1901
-[29] A. Sequeria, H. Rajagopal, L. Ganapathi and C.N.R. Rao, J. Solid State Chem. 76 (1988) 235
-[30] L. Ganapathi, Ashok Kumar and J. Narayan, Fundamental Properties and Novel Materials, Vol. 169, 561-564, Proceeding of Materials Research Society (1989)
-[31] V. Luis De Los Santos, D. Angel Bustamante, J. C. Gonzalez, L. Juan Feijoo, A. Ana Osorio, T. Mitrelias, Y. Majima, Crispin H.W. Barnes, The Open Superconductivity Journal 2 (2010) 19
-[32] A. Manthiram, X.X. Tang, J. B. Goodenough, Phys. Rey. B 37 (1988) 3734